A Discrete-Finite Element Analysis Model Based on Almen Intensity Test for Evaluation of Real Shot Peening Residual Stress
Abstract
:1. Introduction
2. Almen Intensity Simulation and Experimental Verification
2.1. Almen Intensity by DE-FE Analysis
2.2. Experimental Effectiveness of the Almen Intensity Simulation
3. Analytical Peening Residual Stress and Its Experimental Verification
3.1. Peening Residual Stress by the DE-FE Analysis
3.2. Experimental Verification of Peening Residual Stress
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, D.; Tian, T.; Wang, X.; Mao, J.; Xiao, Z.; Wang, R. Surface hardening analysis for shot peened GH4720Li superalloy using a DEM-FEM coupling RV simulation method. Int. J. Mech. Sci. 2021, 209, 106689. [Google Scholar] [CrossRef]
- Xia, B.; Wang, B.; Zhang, P.; Ren, C.; Duan, Q.; Li, X.; Zhang, Z. Improving the high-cycle fatigue life of a high-strength spring steel for automobiles by suitable shot peening and heat treatment. Int. J. Fatigue 2022, 161, 106891. [Google Scholar] [CrossRef]
- Gan, J.; Gao, Z.A.; Wang, Y.; Wang, Z.; Wu, W. Small-Scale Experimental Investigation of Fatigue Performance Improvement of Ship Hatch Corner with Shot Peening Treatments by Considering Residual Stress Relaxation. J. Mar. Sci. Eng. 2021, 9, 419. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, L.; Zhu, L.; Li, Y.; Hong, T.; Yang, W.; Shan, X. State of the Art and Perspectives on Surface-Strengthening Process and Associated Mechanisms by Shot Peening. Coatings 2023, 13, 859. [Google Scholar] [CrossRef]
- Bagherifard, S. Enhancing the Structural Performance of Lightweight Metals by Shot Peeing. Adv. Eng. Mater. 2019, 21, 1801140. [Google Scholar] [CrossRef]
- Bianchetti, C.; Delbergue, D.; Bocher, P.; Lévesque, M.; Brochu, M. Analytical fatigue life prediction of shot peened AA 7050-T7451. Int. J. Fatigue 2019, 118, 271–281. [Google Scholar] [CrossRef]
- Lin, J.; Ma, N.; Lei, Y.; Murakawa, H. Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method. J. Mater. Process. Technol. 2017, 243, 387–394. [Google Scholar] [CrossRef]
- Maleki, E.; Farrahi, G.H.; Reza Kashyzadeh, K.; Unal, O.; Gugaliano, M.; Bagherifard, S. Effects of Conventional and Severe Shot Peening on Residual Stress and Fatigue Strength of Steel ALSI 1060 and Residual Stress Relaxation Due to Fatigue Loading: Experimnetal and Numerical Simulation. Met. Mater. Int. 2021, 27, 2575–2591. [Google Scholar] [CrossRef]
- Zhan, K.; Wu, Y.; Li, J.; Zhao, B.; Yan, Y.; Xie, L.; Ji, V. Investigation on surface layer characteristics of shot peened graphene reinforced Al composite by X-ray diffraction method. Appl. Surf. Sci. 2018, 435, 1257–1264. [Google Scholar] [CrossRef]
- Kim, T.; Lee, H.; Hyun, H.C.; Jung, S. A simple but effective FE model with plastic shot for evaluation of peening residual stress and its experimental validation. Mater. Sci. Eng. A 2011, 528, 5945–5954. [Google Scholar] [CrossRef]
- Meguid, S.A.; Shagal, G.; Stranart, J.C. 3D FE analysis of peening of strain-rate sensitive materials using multiple impingement model. Int. J. Impact Eng. 2002, 27, 119–134. [Google Scholar]
- Miao, H.Y.; Larose, S.; Perron, C.; Lévesque, M. On the potential applications of a 3D random finite element model for the simulation of shot peening. Adv. Eng. Softw. 2009, 40, 1023–1038. [Google Scholar] [CrossRef]
- Kim, T.; Lee, H.; Jung, S.; Lee, J.H. A 3D model with plastic shot for evaluation of equi-biaxial peening residual stress due to multi-impacts. Surf. Coat. Technol. 2012, 206, 3125–3136. [Google Scholar] [CrossRef]
- Gangaraj, S.M.H.; Guagliano, M.; Farrahi, G.H. An approach to relate shot peening finite element simulation to the actual coverage. Surf. Coat. Technol. 2014, 243, 39–45. [Google Scholar] [CrossRef]
- Xiao, X.; Tong, X.; Liu, Y.; Zhao, R.; Gao, G.; Li, Y. Prediction of shot peen forming effects with single and repeated impacts. Int. J. Mech. Sci. 2018, 137, 182–194. [Google Scholar]
- Lin, Q.; Liu, H.; Zhu, C.; Parker, R.G. Investigation on the effect of shot peening coverage on the surface integrity. Appl. Surf. Sci. 2019, 489, 66–72. [Google Scholar]
- Majzoobi, G.H.; Azizi, R.; Nia, A.A. A three-dimensional simulation of shot peening process using multiple shot impacts. J. Mater. Process. Technol. 2005, 164, 1226–1234. [Google Scholar] [CrossRef]
- Bagherifard, S.; Ghelichi, R.; Guagliano, M. On the shot peening surface coverage and its assessment by mens of finite element simulation: A critical review and some original developments. Appl. Surf. Sci. 2012, 259, 186–194. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Wang, X.; Xu, Y. Numerical study of grain refinement induced by severe shot peeing. Int. J. Mech. Sci. 2018, 146, 280–294. [Google Scholar] [CrossRef]
- Bagherifard, S.; Ghelichi, R.; Guagliano, M. Numerical and experimental analysis of surface roughness by shot peening. Appl. Surf. Sci. 2012, 258, 6831–6840. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, J.; Ding, H.; Shao, W.; Zhao, X.; Liu, H.; Jiang, T. A numerical and experimental investigation on the evolution of three-dimensional surface topography of 12Cr2Ni4A steel in shot peeing. J. Manuf. Process. 2021, 70, 259–270. [Google Scholar] [CrossRef]
- Tu, F.; Delbergue, D.; Miao, H.; Klotz, T.; Brochu, M.; Bocher, P.; Levesque, M. A sequential DEM-FEM coupling method for shot peening simulation. Surf. Coat. Technol. 2017, 319, 200–212. [Google Scholar] [CrossRef]
- Bhuvaraghan, B.; Srinivasan, S.M.; Maffeo, B.; McCLain, R.D.; Potdar, Y.; Prakash, O. Shot peening simulation using discrete and finite element methods. Adv. Eng. Softw. 2010, 41, 1266–1276. [Google Scholar] [CrossRef]
- Edward, A.B.; Heyns, P.S.; Kok, S. A Numerical Investigation of a Single-Shot in DEM-FEM Approach to Shot Peening Simulation. Metals 2019, 9, 1183. [Google Scholar] [CrossRef] [Green Version]
- Jebahi, M.; Gakwaya, A.; Lévesque, J.; Mechri, O.; Ba, K. Robust methodology to simulate real shot peeing precess using discrete-continuum coupling method. Int. J. Mech. Sci. 2016, 107, 21–33. [Google Scholar]
- Zhao, J.; Tang, J.; Zhou, W.; Jiang, T.; Liu, H.; Xing, B. Numerical modeling and experimental verification of residual stress distribution evolution of 12Cr2Ni4A steel generated by shot peening. Surf. Coat. Technol. 2022, 430, 127993. [Google Scholar]
- Murugaratnam, K.; Utili, S.; Petrinic, N. A combined DEM-FEM numerical method for Shot Peening parameter optimization. Adv. Eng. Softw. 2015, 79, 13–26. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, S.; Wu, T.; Zhou, Z.; Zhang, W. An evaluation on SP surface property by means of combined FEM-DEM shot dynamics simulation. Adv. Eng. Softw. 2018, 115, 283–296. [Google Scholar] [CrossRef]
- Zhang, Y.; Lai, F.; Qu, S.; Ji, V.; Liu, H.; Li, X. Effect of shot peening on residual stress distribution and tribological behaviors of 17Cr2Ni2MoVNb steel. Surf. Coat. Technol. 2020, 386, 125497. [Google Scholar] [CrossRef]
- Guagliano, M. Relating Almen intensity to residual stresses induced by shot peening: A numerical approach. J. Mater. Process. Technol. 2001, 110, 277–286. [Google Scholar] [CrossRef]
- Gariépy, A.; Miao, H.Y.; Lévesque, M. Simulation of the shot peeing process with variable shot diameters and impacting velocities. Adv. Eng. Softw. 2017, 114, 121–133. [Google Scholar] [CrossRef]
- Wang, C.; Li, W.; Jiang, J.; Chao, X.; Zeng, W.; Xu, J.; Yang, J. An Improved Approach to Direct Simulation of an Actual Almen Shot Peening Intensity Test with a Large Number of Shots. Materials 2020, 13, 5088. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Lee, Y.; He, S.; Jia, W.; Zhao, J. Analysis of the Influence of High Peening Coverage on Almen Intensity and Residual Compressive Stress. Appl. Sci. 2019, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Wang, Z.; Gan, J.; Yang, Y.; Wang, X.; He, J.; Gan, X. The study of universality of a method for predicting surface nanocrystallization after high energy shot peening based on finite element analysis. Surf. Coat. Technol. 2019, 358, 617–627. [Google Scholar] [CrossRef]
- Gariépy, A.; Larose, S.; Perron, C.; Lévesque, M. Shot peening and peen forming finite element modelling—Towards a quantitatie mothod. Int. J. Solids Struct. 2011, 48, 2859–2877. [Google Scholar] [CrossRef]
- AMahmoudi, A.H.; Ghasemi, A.; Farrahi, G.H.; Sherafatnia, K. A comprehensive experimental and numerical study on redistribution of residual stresses by shot peeing. Mater. Des. 2016, 90, 478–487. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, H.; Zhu, C.; Chen, D.; Zhou, S. Effects of different shot peening parameters on residual stress, surface roughness and cell size. Surf. Coat. Technol. 2020, 398, 126054. [Google Scholar] [CrossRef]
- Kim, T.; Lee, J.H.; Lee, H.; Cheong, S.K. An area-average approach to peening residual stress under multi-impacts using a three-dimensional symmetry-cell finite element model with plastic shots. Mater. Des. 2010, 31, 50–59. [Google Scholar] [CrossRef]
- Torres, M.A.S.; Voorwald, H.J.C. An evaluation of shot peening, residual stress and stress relaxation on the fatigue life of AISI 4340 steel. Int. J. Fatigue 2002, 24, 877–886. [Google Scholar] [CrossRef]
Material | E (GPa) | Poisson’s Ratio | ρ (kg/m3) | A (MPa) | B (MPa) | n | m | Tm (K) | Tr (K) | C |
---|---|---|---|---|---|---|---|---|---|---|
SAE 1070 | 205 | 0.29 | 7800 | 1408 | 600.8 | 0.234 | 1.0 | 1793 | 298 | 0.0134 |
Shot ball | 210 | 0.30 | 7800 |
Analysis Time t (ms) | Arc Height (mmA) | |||
---|---|---|---|---|
40 m/s | 50 m/s | 60 m/s | 70 m/s | |
0.3 ms | 0.124 | 0.161 | 0.243 | 0.266 |
0.6 ms | 0.198 | 0.221 | 0.322 | 0.371 |
0.9 ms | 0.233 | 0.254 | 0.335 | 0.401 |
1.2 ms | 0.243 | 0.293 | 0.361 | 0.438 |
Exposure Time t (s) | Arc Height (mmA) | |||
---|---|---|---|---|
v = 40 m/s | v = 50 m/s | v = 60 m/s | v = 70 m/s | |
60 | 0.143 | 0.185 | 0.246 | 0.275 |
120 | 0.197 | 0.238 | 0.312 | 0.355 |
180 | 0.235 | 0.274 | 0.336 | 0.390 |
240 | 0.252 | 0.304 | 0.372 | 0.416 |
Material | E (GPa) | Poisson’s Ratio | ρ (kg/m3) | A (MPa) | B (MPa) | n | m | Tm (K) | Tr (K) | C |
---|---|---|---|---|---|---|---|---|---|---|
AISI4340 | 210 | 0.30 | 7800 | 1498 | 943.8 | 0.260 | 1.03 | 1793 | 298 | 0.014 |
Shot ball | 210 | 0.30 | 7800 |
Shot Ball Velocity (m/s) | Arc Height (mmA) | Analysis σsrcs/MPa | XRD Test [39] σsrcs/MPa | Error (%) |
---|---|---|---|---|
40 | 0.069 | −922.986 | −929.961 | 0.75 |
50 | 0.160 | −874.086 | −917.51 | 4.73 |
60 | 0.211 | −911.864 | −975.828 | 6.55 |
70 | 0.358 | −730.179 | −781.25 | 6.53 |
Shot Ball Velocity (m/s) | Arc Height (mmA) | Analysis σsrcs/MPa | XRD Test [39] σsrcs/MPa | Error (%) |
---|---|---|---|---|
40 | 0.069 | −944.677 | −929.961 | 1.58 |
50 | 0.160 | −1041.03 | −1010.89 | 2.98 |
60 | 0.211 | −1067.78 | −1159.84 | 7.93 |
70 | 0.358 | −1211.59 | −1256.25 | 3.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Park, Y.; Kim, T. A Discrete-Finite Element Analysis Model Based on Almen Intensity Test for Evaluation of Real Shot Peening Residual Stress. Materials 2023, 16, 5472. https://doi.org/10.3390/ma16155472
Wang C, Park Y, Kim T. A Discrete-Finite Element Analysis Model Based on Almen Intensity Test for Evaluation of Real Shot Peening Residual Stress. Materials. 2023; 16(15):5472. https://doi.org/10.3390/ma16155472
Chicago/Turabian StyleWang, Chengan, Yujin Park, and Taehyung Kim. 2023. "A Discrete-Finite Element Analysis Model Based on Almen Intensity Test for Evaluation of Real Shot Peening Residual Stress" Materials 16, no. 15: 5472. https://doi.org/10.3390/ma16155472
APA StyleWang, C., Park, Y., & Kim, T. (2023). A Discrete-Finite Element Analysis Model Based on Almen Intensity Test for Evaluation of Real Shot Peening Residual Stress. Materials, 16(15), 5472. https://doi.org/10.3390/ma16155472