Developing a Simple, Effective, and Quick Process to Make Silver Nanowires with a High Aspect Ratio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of AgNWs
2.2. Electrodes Designing
3. Morphological Characterization
4. Results and Discussion
4.1. X-ray Diffraction (XRD)
4.2. UV-Spectroscopy
4.3. Polyol Method Versus One-Step Modified Polyol Method
4.4. Parameters Affecting the Synthesis of AgNWs
AgNO3 Concentrations
4.5. Agitation Speed
4.6. Temperature
4.7. Halide Type
4.8. AgNWs Transparent Conductive Electrode (AgNWs-TCE)
5. Comparison between the AgNW TCE with the Other Electrodes
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.; Xu, J.; Zhang, Q.; Liu, G.; Wu, T.; Lin, T.; He, P. Low-temperature polyol synthesis of millimeter-scale-length silver nanowires enabled by high concentration of Fe3+ for flexible transparent heaters. Mater. Today Chem. 2023, 30, 101569. [Google Scholar] [CrossRef]
- Yang, L.; Huang, X.; Wu, H.; Liang, Y.; Ye, M.; Liu, W.; Li, F.; Xu, T.; Wang, H. Silver Nanowires: From Synthesis, Growth Mechanism, Device Fabrications to Prospective Engineered Applications. Eng. Sci. 2023, 23, 808. [Google Scholar]
- Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano Lett. 2002, 2, 165–168. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Hsueh, Y.-L.; Huang, J.-J. The concentration effect of capping agent for synthesis of silver nanowire by using the polyol method. J. Solid State Chem. 2014, 214, 2–6. [Google Scholar] [CrossRef]
- Coskun, S.; Aksoy, B.; Unalan, H.E. Polyol synthesis of silver nanowires: An extensive parametric study. Cryst. Growth Des. 2011, 11, 4963–4969. [Google Scholar] [CrossRef]
- Bian, M.; Qian, Y.; Cao, H.; Huang, T.; Ren, Z.; Dai, X.; Zhang, S.; Qiu, Y.; Si, R.; Yang, L.; et al. Chemically Welding Silver Nanowires toward Transferable and Flexible Transparent Electrodes in Heaters and Double-Sided Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 13307–13318. [Google Scholar] [CrossRef]
- Devaraju, S.; Mohanty, A.K.; Won, D.-H.; Paik, H.-J. One-step fabrication of highly stable, durable, adhesion enhanced, flexible, transparent conducting films based on silver nanowires and neutralized PEDOT: PSS. Mater. Adv. 2023, 4, 1769–1776. [Google Scholar]
- Zamkoye, I.I.; Bouclé, J.; Leclerc, N.; Lucas, B.; Vedraine, S. Silver Nanowire Electrodes Integrated in Organic Solar Cells with Thick Active Layer Based on a Low-Cost Donor Polymer. Sol. RRL 2023, 7, 2200756. [Google Scholar] [CrossRef]
- Choi, Y.-J.; Yoon, W.-J.; Bang, G.; Jeong, J.; Lee, J.-H.; Kim, N.; Jeong, K.-U. Coatable Compensator for Flexible Display: Single-Layered Negative Dispersion Retarder Fabricated by Coating, Self-Assembling, and Polymerizing Host–Guest Reactive Mesogens. ACS Appl. Mater. Interfaces 2019, 11, 17766–17773. [Google Scholar]
- Jin, J.; Li, J.; Tai, Q.; Chen, Y.; Mishra, D.D.; Deng, W.; Xin, J.; Guo, S.; Xiao, B.; Wang, X. Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. J. Power Sources 2021, 482, 228953. [Google Scholar]
- Li, S.; Huang, K.; Fan, Q.; Yang, S.; Shen, T.; Mei, T.; Wang, J.; Wang, X.; Chang, G.; Li, J. Highly sensitive solution-gated graphene transistors for label-free DNA detection. Biosens. Bioelectron. 2019, 136, 91–96. [Google Scholar] [CrossRef]
- Jian, M.; Zhang, Y.; Liu, Z. Natural biopolymers for flexible sensing and energy devices. Chin. J. Polym. Sci. 2020, 38, 459–490. [Google Scholar] [CrossRef]
- Schönenberger, C.; van der Zande, B.M.I.; Fokkink, L.G.J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U. Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. J. Phys. Chem. B 1997, 101, 5497–5505. [Google Scholar] [CrossRef]
- Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966. [Google Scholar]
- Murphy, C.J.; Jana, N.R. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 2002, 14, 80–82. [Google Scholar]
- Bhattacharrya, S.; Saha, S.; Chakravorty, D. Nanowire formation in a polymeric film. Appl. Phys. Lett. 2000, 76, 3896–3898. [Google Scholar] [CrossRef]
- Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem. Mater. 2001, 13, 2753–2755. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, L.; Chen, G.; Wang, Q. Synthesis and Characterization of Silver Nanowires Prepared by Polyol Method. In Advanced Graphic Communication, Printing and Packaging Technology; Springer: Singapore, 2020; pp. 781–787. [Google Scholar]
- Fievet, F.; Lagier, J.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 1989, 32, 198–205. [Google Scholar] [CrossRef]
- Jarrett, R.; Crook, R. Silver nanowire purification and separation by size and shape using multi-pass filtration. Mater. Res. Innov. 2016, 20, 86–91. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Y.; Wu, J.; Pan, Y.; Ye, H.; Zeng, X. Synthesis of Silver Nanowires Using a Polyvinylpyrrolidone-Free Method with an Alpinia zerumbet Leaf Based on the Oriented Attachment Mechanism. ACS Omega 2023, 8, 2237–2242. [Google Scholar] [CrossRef]
- Nasikhudin, N.; Al Fath, Y.; Rahmadani, H.; Diantoro, M.; Pujiarti, H.; Aziz, S.A. Propylene Glycol and Glycerol Addition in Forming Silver Nanowires (AgNWs) for Flexible and Conductive Electrode. E3S Web Conf. 2023, 400, 01020. [Google Scholar] [CrossRef]
- Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem.–A Eur. J. 2005, 11, 454–463. [Google Scholar]
- Parente, M.; van Helvert, M.; Hamans, R.F.; Verbroekken, R.; Sinha, R.; Bieberle-Hütter, A.; Baldi, A. Simple and Fast High-Yield Synthesis of Silver Nanowires. Nano Lett. 2020, 20, 5759–5764. [Google Scholar] [CrossRef]
- Dzido, G.; Smolska, A.; Farooq, M.O. Rapid Synthesis of Silver Nanowires in the Polyol Process with Conventional and Microwave Heating. Appl. Sci. 2023, 13, 4963. [Google Scholar] [CrossRef]
- Mao, H.; Feng, J.; Ma, X.; Wu, C.; Zhao, X. One-dimensional silver nanowires synthesized by self-seeding polyol process. J. Nanoparticle Res. 2012, 14, 887. [Google Scholar] [CrossRef]
- Siekkinen, A.R.; McLellan, J.M.; Chen, J.; Xia, Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 2006, 432, 491–496. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Rahim, R.D.; Nagiub, A.M.; Taher, M.A. Electrical and Optical Properties of Flexible Transparent Silver Nanowires electrodes. Int. J. Thin. Film. Sci. Technol. 2022, 11, 123–132. [Google Scholar]
- Johan, M.R.; Aznan, N.A.K.; Yee, S.T.; Ho, I.H.; Ooi, S.W.; Singho, N.D.; Aplop, F. Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. J. Nanomater. 2014, 2014, 54. [Google Scholar] [CrossRef] [Green Version]
- Korte, K.E.; Skrabalak, S.E.; Xia, Y. Rapid synthesis of silver nanowires through a CuCl-or CuCl 2-mediated polyol process. J. Mater. Chem. 2008, 18, 437–441. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, Y.; Mayers, B.T.; Herricks, T.; Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736–4745. [Google Scholar]
- Yan, X.-S.; Lin, P.; Qi, X.; Yang, L. Finnis–Sinclair potentials for fcc Au–Pd and Ag–Pt alloys. Int. J. Mater. Res. 2011, 102, 381–388. [Google Scholar] [CrossRef]
- Nekahi, A.; Marashi, S.; Fatmesari, D.H. High yield polyol synthesis of round-and sharp-end silver nanowires with high aspect ratio. Mater. Chem. Phys. 2016, 184, 130–137. [Google Scholar] [CrossRef]
- Shkir, M.; Khan, M.T.; Ashraf, I.; AlFaify, S.; El-Toni, A.M.; Aldalbahi, A.; Ghaithan, H.; Khan, A. Rapid microwave-assisted synthesis of Ag-doped PbS nanoparticles for optoelectronic applications. Ceram. Int. 2019, 45, 21975–21985. [Google Scholar] [CrossRef]
- Jia, C.; Yang, P.; Zhang, A. Glycerol and ethylene glycol co-mediated synthesis of uniform multiple crystalline silver nanowires. Mater. Chem. Phys. 2014, 143, 794–800. [Google Scholar]
- Ajuria, J.; Ugarte, I.; Cambarau, W.; Etxebarria, I.; Tena-Zaera, R.; Pacios, R. Insights on the working principles of flexible and efficient ITO-free organic solar cells based on solution processed Ag nanowire electrodes. Sol. Energy Mater. Sol. Cells 2012, 102, 148–152. [Google Scholar] [CrossRef]
- Abdel-Rahim, R.D.; Nagiub, A.M.; Pharghaly, O.A.; Taher, M.A.; Yousef, E.S.; Shaaban, E.R. Optical properties for flexible and transparent silver nanowires electrodes with different diameters. Opt. Mater. 2021, 117, 111123. [Google Scholar] [CrossRef]
- Kottmann, J.P.; Martin, O.J.; Smith, D.R.; Schultz, S. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 2001, 64, 235402. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Xia, Y. Gold and silver nanoparticles: A class of chromophores with colors tunable in the range from 400 to 750 nm. Analyst 2003, 128, 686–691. [Google Scholar]
- Zhu, J.-J.; Kan, C.-X.; Wan, J.-G.; Han, M.; Wang, G.-H. High-Yield Synthesis of Uniform Ag Nanowires with High Aspect Ratios by Introducing the Long-Chain PVP in an Improved Polyol Process. J. Nanomater. 2011, 2011, 982547. [Google Scholar]
- Zhang, K.; Du, Y.; Chen, S. Sub 30 nm silver nanowire synthesized using KBr as co-nucleant through one-pot polyol method for optoelectronic applications. Org. Electron. 2015, 26, 380–385. [Google Scholar] [CrossRef]
- Zhan, K.; Su, R.; Bai, S.; Yu, Z.; Cheng, N.; Wang, C.; Xu, S.; Liu, W.; Guo, S.; Zhao, X.-Z. One-pot stirring-free synthesis of silver nanowires with tunable lengths and diameters via a Fe 3+ & Cl− co-mediated polyol method and their application as transparent conductive films. Nanoscale 2016, 8, 18121–18133. [Google Scholar] [PubMed]
- Ran, Y.; He, W.; Wang, K.; Ji, S.; Ye, C. A one-step route to Ag nanowires with a diameter below 40 nm and an aspect ratio above 1000. Chem. Commun. 2014, 50, 14877–14880. [Google Scholar] [CrossRef]
- Abdel-Rahim, R.D.; Emran, M.Y.; Nagiub, A.M.; Farghaly, O.A.; Taher, M.A. Silver nanowire size-dependent effect on the catalytic activity and potential sensing of H2O2. Electrochem. Sci. Adv. 2021, 1, e2000031. [Google Scholar] [CrossRef]
- Basyooni, M.A.; Ahmed, A.M.; Shaban, M. Plasmonic hybridization between two metallic nanorods. Optik 2018, 172, 1069–1078. [Google Scholar] [CrossRef]
- Junaidi, J.; Yunus, M.; Suharyadi, E.; Harsojo, H.; Triyana, K. Effect of stirring rate on the synthesis silver nanowires using polyvinyl alcohol as a capping agent by polyol process. Int. J. Adv. Sci. Eng. Inf. Technol. 2016, 6, 365–369. [Google Scholar] [CrossRef] [Green Version]
- Amirjani, A.; Marashi, P.; Fatmehsari, D.H. The effect of agitation state on polyol synthesis of silver nanowire. Int. Nano Lett. 2016, 6, 41–44. [Google Scholar] [CrossRef] [Green Version]
- Bergin, S.M.; Chen, Y.-H.; Rathmell, A.R.; Charbonneau, P.; Li, Z.-Y.; Wiley, B.J. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale 2012, 4, 1996–2004. [Google Scholar] [CrossRef] [Green Version]
- Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K.; Nakazawa, E.; Hara, M.; et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J. Mater. Chem. A 2014, 2, 6326–6330. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, Y.; Yang, G.; Zhang, S.; Yu, L.; Zhang, P. Large scale preparation of silver nanowires with different diameters by a one-pot method and their application in transparent conducting films. RSC Adv. 2016, 6, 8096–8102. [Google Scholar] [CrossRef]
- Ma, J.; Wang, K.; Zhan, M. A comparative study of structure and electromagnetic interference shielding performance for silver nanostructure hybrid polyimide foams. RSC Adv. 2015, 5, 65283–65296. [Google Scholar] [CrossRef]
- Liu, S.; Yue, J.; Gedanken, A. Synthesis of long silver nanowires from AgBr nanocrystals. Adv. Mater. 2001, 13, 656–658. [Google Scholar] [CrossRef]
- Chang, M.-H.; Cho, H.-A.; Kim, Y.-S.; Lee, E.-J.; Kim, J.-Y. Thin and long silver nanowires self-assembled in ionic liquids as a soft template: Electrical and optical properties. Nanoscale Res. Lett. 2014, 9, 330. [Google Scholar] [PubMed] [Green Version]
- Da Silva, R.R.; Yang, M.; Choi, S.-I.; Chi, M.; Luo, M.; Zhang, C.; Li, Z.-Y.; Camargo, P.H.C.; Ribeiro, S.J.L.; Xia, Y. Facile synthesis of sub-20 nm silver nanowires through a bromide-mediated polyol method. ACS Nano 2016, 10, 7892–7900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wei, Y.; Ou, M.; Huang, Z.; Lin, S.; Tu, Y.; Hu, J. Behind the role of bromide ions in the synthesis of ultrathin silver nanowires. Mater. Lett. 2018, 213, 23–26. [Google Scholar] [CrossRef]
- Trung, T.N.; Arepalli, V.K.; Gudala, R.; Kim, E.-T. Polyol synthesis of ultrathin and high-aspect-ratio Ag nanowires for transparent conductive films. Mater. Lett. 2017, 194, 66–69. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, J.; He, L.; Shen, B.; Chen, J.; Mao, H.; Ren, Y.; Yin, J.; Cui, H.; Yang, H. Tetrabutylammonium Tribromide-Induced Synthesis of Silver Nanowires with Ultrahigh Aspect Ratio for a Flexible Transparent Film. Langmuir 2023, 39, 10651–10659. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Connor, S.T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689–692. [Google Scholar] [CrossRef]
- Hu, L.; Kim, H.S.; Lee, J.-Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963. [Google Scholar] [CrossRef]
- Saeidi, M.; Eshaghi, A.; Aghaei, A.A. Electro-optical properties of silver nanowire thin film. J. Mater. Sci. Mater. Electron. 2023, 34, 110. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharshan, G.A.; Uosif, M.A.M.; Abdel-Rahim, R.D.; Yousef, E.S.; Shaaban, E.R.; Nagiub, A.M. Developing a Simple, Effective, and Quick Process to Make Silver Nanowires with a High Aspect Ratio. Materials 2023, 16, 5501. https://doi.org/10.3390/ma16155501
Alharshan GA, Uosif MAM, Abdel-Rahim RD, Yousef ES, Shaaban ER, Nagiub AM. Developing a Simple, Effective, and Quick Process to Make Silver Nanowires with a High Aspect Ratio. Materials. 2023; 16(15):5501. https://doi.org/10.3390/ma16155501
Chicago/Turabian StyleAlharshan, Gharam A., Mohamed A. M. Uosif, Rabeea D. Abdel-Rahim, El Sayed Yousef, Essam Ramadan Shaaban, and Adham M. Nagiub. 2023. "Developing a Simple, Effective, and Quick Process to Make Silver Nanowires with a High Aspect Ratio" Materials 16, no. 15: 5501. https://doi.org/10.3390/ma16155501
APA StyleAlharshan, G. A., Uosif, M. A. M., Abdel-Rahim, R. D., Yousef, E. S., Shaaban, E. R., & Nagiub, A. M. (2023). Developing a Simple, Effective, and Quick Process to Make Silver Nanowires with a High Aspect Ratio. Materials, 16(15), 5501. https://doi.org/10.3390/ma16155501