Development of Inoculants for Aluminum Alloy: A Review
Abstract
:1. Introduction
2. Specific Grain Refiner
2.1. Al-Ti-B
2.2. Al-Ti-C
2.3. Al-Ti-B-C
2.4. Al-Ti-B-(C)-Ce
2.5. Al-Sc Alloy
2.6. Fe-Rich Phase in Al-Si Alloy
3. Conclusions
- (1)
- In recent years, efforts have been made to develop new efficient and environmentally friendly grain refiners for aluminum alloys, including Al-Ti-C, Al-Ti-C-B, and Al-Ti-B-C-Ce, and adding rare-earth elements. The addition of Re element can improve the decay delay of Al-Ti-B and greatly improve the refining efficiency. However, due to the poor wettability of C and the Al matrix, the yield of C is low and the production efficiency is reduced, while Re is expensive and easy to oxidize, and more efficient process technology still needs to be developed to achieve large-scale industrial production.
- (2)
- Sc is the most effective element for grain refinement of aluminum alloy, and its mismatch with aluminum matrix is only 0.5%. The interface energy and distortion energy needed to be overcome by the nucleation of aluminum atoms at the Al3Sc interface are very small, and it plays a very effective role in nucleation. However, its application as nucleation substrata in production requires further consideration of cost and environmental issues. Therefore, Sc acts together with other elements, such as Ti and Zr, which is a very promising research direction for the future.
- (3)
- The excessive iron element in Al-Si alloy is the key problem restricting its mechanical properties and recycling. Whether it is chemical modification, rapid solidification, ultrasonic treatment, or overheating treatment, there are complex processes and environmentally unfriendly problems; therefore, Al-Si alloy will develop in the direction of high efficiency, low addition, high purity, and high stability, and the research work of the grain refinement mechanism will be gradually advanced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quested, T.E. Understanding mechanisms of grain refinement of aluminium alloys by inoculation. Mater. Sci. Technol. 2004, 20, 1357–1369. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Z.; Qiu, D. Revisiting the role of peritectics in grain refinement of Al alloys. Acta Mater. 2013, 61, 360–370. [Google Scholar] [CrossRef]
- Minagawa, A.; Piper, M. Mechanism of High Grain Refinement Effectiveness on New Grain Refiner “TiBAl Advance”; Springer International Publishing: Cham, Switzerland, 2021; pp. 844–849. [Google Scholar]
- Wang, T.; Chen, Z.; Fu, H. Grain refining potency of Al–B master alloy on pure aluminum. Scr. Mater. 2011, 64, 1121–1124. [Google Scholar] [CrossRef]
- Chen, Z.; Yan, K. Grain refinement of commercially pure aluminum with addition of Ti and Zr elements based on crystallography orientation. Sci. Rep. 2020, 10, 16591. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, Q.; Jiang, H. Interfacial energy between Al melt and TiB2 particles and efficiency of TiB2 particles to nucleate α-Al. Sci. Mater. 2019, 160, 25–28. [Google Scholar] [CrossRef]
- Xie, H.; Lv, J. Precipation of TiAl3 in remelting Al-5Ti- 1B and the grain refinement of 7050 alloy. Mater. Res. Express. 2021, 8, 066513. [Google Scholar] [CrossRef]
- Qian, P.; Tang, Z.; Yuan, M. Microstructure and refinement mechanism of TiB2/TiAl3 in remelted Al-5Ti- 1B system. Mater. Sci. Technol. 2019, 35, 1563–1571. [Google Scholar] [CrossRef]
- Banerji, A.; Reif, W. Grain refinement of aluminum by TiC. Metall. Trans. A 1985, 16, 2065–2068. [Google Scholar] [CrossRef]
- Banerji, A.; Reif, W. Metallographic investigation of TiC nucleants in the newly developed Al-Ti-C grain refiner. J. Mater. Sci. 1994, 29, 1958–1965. [Google Scholar] [CrossRef]
- Banerji, A.; Reif, W. Development of Al-Ti-C grain refiners containing TiC. Metall. Trans. A 1986, 17, 2127–2137. [Google Scholar] [CrossRef]
- Jiang, R.P.; Li, X.Q.; Zhang, M. Investigation on the mechanism of grain refinement in aluminum alloy solidified under ultrasonic vibration. Met. Mater. Int. 2015, 21, 104–108. [Google Scholar] [CrossRef]
- Maxwell, I.; Hellawell, A. An analysis of the peritectic reaction with particular reference to Al-Ti alloys. Acta Metall. 1975, 23, 901–909. [Google Scholar] [CrossRef]
- Tan, Q.Y.; Zhang, J.Q.; Sun, Q. Inoculation treatment of an additively manufactured 2024 aluminium alloy with titanium nanoparticles. Acta Mater. 2020, 196, 1–16. [Google Scholar] [CrossRef]
- Hu, M.L.; Wang, F.; Jiang, B. Fabrication of Al–Ti–B Grain Refiner Using Machining Ti Chips, Reaction Mechanisms and Grain Refinement Performance in Pure Al. Met. Mater. Int. 2021, 28, 1471–1479. [Google Scholar] [CrossRef]
- Zaid, A.I.O.; Al-Qawabah, S.M.A. Effect of Zirconium Addition on the Grain Size and Mechanical Behavior of Aluminum Grain Refined by Titanium Plus Boron (Ti plus B) in the as Cast and Cold Extruded Conditions. Adv. Mater. XII 2012, 510–511, 241. [Google Scholar] [CrossRef]
- Wang, F.; Chiu, Y.L.; Eskin, D. A grain refinement mechanism of cast commercial purity aluminium by vanadium. Mater. Charact. 2021, 181, 111468. [Google Scholar] [CrossRef]
- Baeckerud, L.; Johnsson, L.; Gustafson, P. Grain refining mechanisms in aluminium as a result of additions of titanium and boron. Pt. Alum. 1991, 67, 780–785. [Google Scholar]
- Mao, G.; Liu, S.; Wu, Z. The effects of Y on primary α-Al and precipitation of hypoeutectic Al-Si alloy. Mater. Lett. 2020, 271, 127795. [Google Scholar] [CrossRef]
- Men, H.; Fan, Z. Effects of lattice mismatch on interfacial structures of liquid and solidified Al in contact with hetero-phase substrates: MD simulations. IOP Conf. Ser. Mater. Sci. Eng. 2012, 27, 012007. [Google Scholar]
- Han, Y.F.; Dai, Y.B.; Shu, D. First-principles calculations on the stability of Al/TiB2 interface. Appl. Phys. Lett. 2006, 89, 144107. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, Y.; Zhang, Y. Grain refining mechanism in the Al/Al-Ti-B system. Acta Mater. 2015, 84, 292–304. [Google Scholar] [CrossRef]
- Cao, Y.D.; Chen, X.H.; Wang, Z.D. Synergistic influence of La and Zr on microstructure and mechanical performance of an Al-Si-Mg alloy at casting state. J. Alloys Compd. 2022, 902, 163829. [Google Scholar] [CrossRef]
- Xue, J.; Wang, J.; Han, Y.F. Behavior of CeO2 additive in in-situ TiB2 particles reinforced 2014 Al alloy composite. Trans. Nonferrous Met. Soc. China 2012, 22, 1012–1017. [Google Scholar] [CrossRef]
- Ding, W.W.; Zhao, X.Y.; Zhao, W.J. Effects of Al-Ti-C-Ce Master Alloy on Microstructure and Mechanical Properties of Hypoeutectic Al–7%Si Alloy. Int. J. Metalcast. 2019, 13, 426–437. [Google Scholar] [CrossRef]
- Davis, T.A.; Bochler, L.; Delia, F. Effect of TiB or on the grain refinement and hot tearing susceptibility of AZ91D magnesium alloy. J. Alloys Compd. 2018, 759, 70–79. [Google Scholar] [CrossRef]
- Xu, Z.Y.; Fang, C.F.; Wang, R. Microstructural evolution, strengthening and toughening mechanisms of AZ80 composite sheet reinforced by TiB2 with fiber-like distribution. J. Alloys Compd. 2021, 877, 160278. [Google Scholar] [CrossRef]
- Bae, J.H.; You, B.S. Feasibility of grain refinement method for AZ91 alloy using commercial Al-SiC composite. Mater. Sci. Technol. 2020, 36, 194–201. [Google Scholar] [CrossRef]
- Zhao, Y.L.; He, W.X.; Song, D.F. Effect of ultrasonic melt processing and Al-Ti-B on the microstructural refinement of recycled Al alloys. Ultrason. Sonochem. 2022, 89, 106139. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, H.; Wang, Q. A novel method to achieve grain refinement in aluminum. Metall. Mater. Trans. A 2016, 47, 4788–4794. [Google Scholar] [CrossRef]
- Zhao, K.; Gao, T.; Yang, H. Enhanced grain refinement and mechanical properties of a high-strength Al-Zn-Mg-Cu-Zr alloy induced by TiC nano-particles. Mater. Sci. Eng. A 2021, 806, 140852–140864. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, H.Y.; Wang, Q.D. Nanoparticle- induced nucleation of eutectic silicon in hypoeutectic Al-Si alloy. Mater. Charact. 2016, 117, 41–45. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, H.Y.; Jia, Y.W. Nanoparticle- inhibited growth of primary aluminum in Al–10Si alloys. Acta Mater. 2016, 103, 252–263. [Google Scholar] [CrossRef]
- Lyu, Y.; Ding, R.; Xu, G. Effect of electric current pulses on TiB2 particle dispersion in aluminum alloy melt. Mater. Lett. 2020, 274, 127891–127894. [Google Scholar] [CrossRef]
- Gao, Q.; Wu, S.; Lü, S. Improvement of particles distribution of in-situ 5 vol% TiB2 particulates reinforced Al-4.5Cu alloy matrix composites with ultrasonic vibration treatment. J. Alloys Compd. 2017, 692, 1–9. [Google Scholar] [CrossRef]
- Zhao, B.; Cai, Q.; Li, X. Effect of TiC nanoparticles supported by Ti powders on the solidification behavior and microstructure of Pure Aluminum. Met. Mater. Int. 2018, 24, 945–954. [Google Scholar] [CrossRef]
- Li, X.; Cai, Q.; Zhao, B.; Li, B.; Liu, B.; Ma, W. Grain refining mechanism in pure aluminum with nanosized TiN/Ti composite refiner addition. J. Alloys Compd. 2017, 699, 283–290. [Google Scholar] [CrossRef]
- Karbalaei Akbari, M.; Baharvandi, H.R.; Mirzaee, O. Fabrication of nano-sized Al2O3 reinforced casting aluminum composite focusing on preparation process of reinforcement powders and evaluation of its properties. Compos. Part B 2013, 55, 426–432. [Google Scholar] [CrossRef]
- Bin, H.; Liu, Y.Z.; Zhou, Z.G.; Cheng, W.; Liu, X.H. Selective laser melting of 7075 aluminum alloy inoculated by Al–Ti–B: Grain refinement and superior mechanical properties. Vacuum 2022, 200, 111030. [Google Scholar]
- Men, H.; Fan, Z. Effects of solute content on grain refinement in an isothermal melt. Acta Mater. 2011, 59, 2704–2712. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hage, F.S.; Ramasse, Q.M. The nucleation sequence of α-Al on TiB2 particles in Al-Cu alloys. Acta Mater. A 2021, 206, 116652–116661. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Guan, R.G.; Guan, X.H. Effects of Electromagnetic Stirring, Shearing, and Extrusion on TiB2 and TiAl3 Particles in Al-5Ti-1B(wt.%) Alloy. Mater. Manuf. Process. 2015, 30, 1223–1228. [Google Scholar] [CrossRef]
- Wang, S.C.; Chou, C.P. Effect of adding Sc and Zr on grain refinement and ductility of AZ31 magnesium alloy. J. Mater. Process. Technol. 2008, 197, 116–121. [Google Scholar] [CrossRef]
- Rao, A.A.; Murty, B.S.; Chakraborty, M. Role of zirconium and impurities in grain refinement of aluminium lNith Ai-Ti-B. Mater. Sci. Technol. 1997, 13, 769–777. [Google Scholar] [CrossRef]
- Jin, Y.; Li, Y.; Ke, M. In-situ observation of grain refinement dynamics of hypoeutectic Al-Si alloy inoculated by Al-Ti-Nb-B alloy. Scr. Mater. 2020, 187, 142–147. [Google Scholar]
- Tamirisakandala, S.; Bhat, R.B.; Tiley, T.S.; Miracle, D.B. Grain refinement of cast titanium alloys via trace boron addition. Scr. Mater. 2005, 53, 1421–1426. [Google Scholar] [CrossRef]
- Abdel-Hamid, A.A. Effect of other elements on the grain refinement of Al by Ti or Ti and B. Int. J. Mater. Res. 1989, 80, 566–569. [Google Scholar] [CrossRef]
- Murty, B.S.; Kori, S.A.; Chakraborty, M. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying. Int. Mater. Rev. 2002, 47, 3–29. [Google Scholar] [CrossRef]
- Bunn, A.M.; Schumacher, P.; Kearns, M.A. Grain refinement by Al-Ti-B alloys in aluminium melts: A study of the mechanisms of poisoning by zirconium. Mater. Sci. Technol. 1999, 15, 1115–1123. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, C.M.; Zhou, L. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater. 2019, 164, 428–439. [Google Scholar] [CrossRef] [Green Version]
- ZHANG, L.L.; JIANG, H.X.; Jie, H. Kinetic behaviour of TiB2 particles in Al melt and their effect on grain re-finement of aluminium Alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2035–2044. [Google Scholar] [CrossRef]
- Johnsson, M. Influence of Zr on the grain refinementof aluminium. Int. J. Mater. Res. 1994, 85, 786–789. [Google Scholar] [CrossRef]
- Qiu, D.; Taylor, J.A.; Zhang, M.X. Understanding the co-poisoning effect of Zr and Ti on the grain refinement of cast aluminum alloys. Metall. Mater. Trans. A 2010, 41, 3412–3421. [Google Scholar] [CrossRef]
- Ohnsson, M. Influence of Si and Fe on the grain refinement of aluminium. Int. J. Mater. Res. 1994, 85, 781–785. [Google Scholar] [CrossRef]
- Lee, Y.C.; Dahle, A.K.; Stjohn, D.H. The effect of grain refinement and silicon content on grain formation in hypoeutectic Al-Si alloys. Mater. Sci. Eng. A 1999, 259, 43–52. [Google Scholar] [CrossRef]
- Hernandez, F.C.R.; Sokolowski, J.H. Comparison among chemical and electromagnetic stirring and vibration melt treatments for Al-Si hypereutectic alloys. J. Alloys Compd. 2006, 426, 205–212. [Google Scholar] [CrossRef]
- Wang, Y.; Que, Z.P.; Hashimoto, T. Mechanism for Si poisoning of Al-Ti-B grain refiners in Al alloys. Metall. Mater. Trans. A 2020, 51, 5743–5757. [Google Scholar] [CrossRef]
- Lim, Y.P.; Sham, S.; Abdel, M.H. Grain refinement of LM6 Al–Si alloy sand castings to enhance mechanical properties. J. Mater. Process. Technol. 2005, 162–163, 435–441. [Google Scholar]
- Li, H.; Sritharan, T.; Seow, H.P. Grain refinement of DIN226 alloy at high titanium and boron inoculation levels. Scr. Mater. 1996, 35, 869–872. [Google Scholar] [CrossRef]
- Taylor, J.A.; Qiu, D.; Zhang, M.X. A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys. Acta Mater. 2007, 55, 1447–1456. [Google Scholar]
- Ding, W.; Chen, T.; Zhao, X.; Cheng, Y.; Liu, X.; Gou, L. Investigation of Microstructure of Al-5Ti-0.62C System and Synthesis Mechanism of TiC. Materials 2020, 13, 310. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Sun, Q.; Zhang, L. Al-Ti-C Master Alloy with Nano-Sized TC Particles Dispersed in the Matrix Prepared by Using Carbon Nanotubes as C Source. J. Alloys Compd. 2018, 748, 774–782. [Google Scholar]
- Ding, H.; Liu, X.; Yu, L. Influence of Zirconium on Grain Refining Efficiency of Al-Ti-C Master Alloys. J. Mater. Sci. 2007, 42, 9817–9821. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, M.; Zhang, G. Influence of Ti/C Mass Ratio on the Microstructure of Al-Ti-C Master Alloy and Refinement Effect on Pure Aluminum. Results Phys. 2021, 23, 104000. [Google Scholar] [CrossRef]
- Vinod, G.S.; Murty, B.S.; Chakr, M. Development of Al–Ti–C grain refiners and study of their grain refining efficiency on Al and Al–7Si alloy. J. Alloys Compd. 2005, 396, 143–150. [Google Scholar] [CrossRef]
- Mccartney, D.G. Grain refining of aluminium and its alloys using inoculants. Int. Mater. Rev. 1989, 34, 247–260. [Google Scholar] [CrossRef]
- Jiang, H.T.; Hui, X.; Xu, Z.H. Effect of Zn content and Sc, Zr addition on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys. J. Alloys Compd. 2023, 947, 169246. [Google Scholar] [CrossRef]
- Guo, Y.W.; Wei, W.; Shi, W. Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion. J. Alloys Compd. 2022, 912, 165237. [Google Scholar] [CrossRef]
- Yang, H.B.; Gao, T.; Wang, H.C. Influence of C/Ti stoichiometry in TiCx on the grain refinement efficiency of Al–Ti–C master alloy. J. Mater. Sci. Technol. 2017, 33, 616–622. [Google Scholar] [CrossRef]
- Sha, S.G.; Ghol, A.; Nag, S. Effect of Al-5Ti-1B and Zr grain refiners on the solidification characteristics and microstructure of Al-6Mg alloy studied through thermal analysis. Thermochim. Acta 2022, 711, 179200. [Google Scholar]
- Ding, W.; Zhang, X.; Zhao, W. Microstructure of A1-5Ti-0.6C-1Ce Master Alloy and Its Grain-Refining Performance. Int. J. Mater. Res. 2015, 106, 1240–1243. [Google Scholar] [CrossRef]
- Liu, S.Q.; Xin, W.; Cui, C.X. Enhanced grain refinement of in situ CeB6/Al composite inoculant on pure aluminum by microstructure control. J. Alloys Compd. 2017, 701, 926–934. [Google Scholar] [CrossRef]
- Zhang, L.; Song, Y.; Yang, L. Effect of La and TiB2 Particles on Grain Refinement in Aluminum Alloy. Materials 2022, 15, 600. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Q.; Xin, W.; Qun, Z.; Han, B.; Han, X. Significantly improved particle strengthening of Al-Sc alloy by high Sc composition design and rapid solidification. Mater. Sci. Eng. A 2021, 800, 140304. [Google Scholar] [CrossRef]
- Fridlyander, I.N.; Tkachenko, E.A.; Bersteney, V.V.; Cherepok, G.V.; Latushkina, L.V.; Zhegina, I.P.; Grinevich, V.A. Effect of microstructure on the cracking resistance characteristics of Al-Zn-Mg-Cu-Zr wrought high-strength alloy. Mater. Sci. Forum 2002, 396–402, 396–402. [Google Scholar]
- Vlach, M. Phase transformations in isochronally annealed mould cast and cold-rolled Al-Sc-Z-based alloy. J. Alloys Compd. 2010, 492, 143–148. [Google Scholar]
- Samuel, A.; Doty, H.; Valtierra, S. A Metallographic Study of Grain Refining of Sr-Modified 356 Alloy. Int. J. Metalcast. 2017, 11, 305–320. [Google Scholar]
- Ferreira, T.; Oliveira, I.L.D.; Zepon, G. Rotational outward solidification casting: An innovative single step process to produce a functionally graded aluminum reinforced with quasicrystal approximant phases. Mater. Des. 2020, 189, 108544. [Google Scholar]
- Puncreobutr, C.; Phillion, A.; Fife, J.; Lee, P. Coupling in situ synchrotron X-ray tomographic microscopy and numerical simulation to quantify the influence of intermetallic formation on permeability in aluminium-silicon-copper alloys. Acta Mater. 2014, 64, 316–325. [Google Scholar] [CrossRef]
- Seifeddine, S.; Svensson, I.L. Prediction of mechanical properties of cast aluminium components at various iron contents. Mater. Des. 2010, 31, S6–S12. [Google Scholar]
- Sha, M.; Wu, S.; Wan, L. Combined effects of cobalt addition and ultrasonic vibration on microstructure and mechanical properties of hypereutectic Al-Si alloys with 0.7% Fe. Mater. Sci. Eng. A 2012, 554, 142–148. [Google Scholar]
- Shabestari, S. The effect of iron and manganese on the formation of intermetallic compounds in aluminum-silicon alloys. Mater. Sci. Eng. A 2004, 383, 289–398. [Google Scholar]
- Sreeja; Kumari, S.S.; Pillai, R.M.; Rajan, T.P.D.; Pai, B.C. Effects of individual and combined additions of Be, Mn, Ca and Sr on the solidification behaviour, structure and mechanical properties of Al-7Si-0.3Mg-0.8Fe alloy. Mater. Sci. Eng. A 2007, 460–461, 561–573. [Google Scholar]
- Huang, H.J.; Cai, Y.H.; Cui, H.; Huang, J.F.; He, J.P.; Zhang, J.S. Influence of Mn addition on microstructure and phase formation of spray-deposited Al-25Si-xFe-yMn alloy. Mater. Sci. Eng. A 2009, 502, 118–325. [Google Scholar]
- Zhong, G.; Wu, S.; Jiang, H.; An, P. Effects of ultrasonic vibration on the iron-containing intermetallic compounds of high silicon aluminum alloy with 2% Fe. J. Alloys Compd. 2010, 492, 482–487. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Srivastava, V.C.; Gloter, A.; Ojha, S.N. Microstructural features induced by spray processing and hot extrusion of an Al-18% Si-5% Fe-1.5% Cu alloy. Acta Mater. 2006, 54, 1741–1748. [Google Scholar]
- Xiao, S.; Liu, S.Q.; Wang, X.; Cui, C.X.; Li, Z.R. Effect of cooling rate on the microstructure evolution and mechanical properties of iron-rich Al-Si alloy. Materials 2022, 15, 411. [Google Scholar]
- Johannes, P.S.; Eric, S.; Paul, S. Investigation of the Formation of Iron-Rich Intermetallic Phases in Al–Si Alloys via Thermal Analysis Cooling Curves, Including a Real-Time Detection for Filtration Process. Adv. Eng. Mater. 2023, 25, 2201576. [Google Scholar]
- Song, D.F.; Zhao, Y.L.; Jia, Y.W. Effect of B addition on the formation of Fe-rich phases in Al-Si-Fe alloys. J. Alloys Compd. 2023, 930, 167426. [Google Scholar]
- Anna, D.; Lu, P.Y.; Tang, N.K. Iron Reduction in 356 Secondary Aluminum Alloy by Mn and Cr Addition for Sediment Separation. Int. J. Metalcast. 2021, 15, 182–192. [Google Scholar]
- Zheng, D.L.; Li, J.; Shi, C.B. Crystallization Characteristics and In-Mold Performance of Electroslag Remelting-Type TiO2-Bearing Slag. Metall. Mater. Trans. B 2019, 50, 1148–1160. [Google Scholar]
Refiner Type | Obvious Advantage | Analysis of Disadvantages |
---|---|---|
Al-Ti-B |
| |
Al-Ti-C |
| |
Al-Ti-B-C |
| |
Al-Ti-B(C)-Ce |
| |
Al-Sc alloy |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhao, T.; Fu, J.; Zu, Q. Development of Inoculants for Aluminum Alloy: A Review. Materials 2023, 16, 5500. https://doi.org/10.3390/ma16155500
Liu S, Zhao T, Fu J, Zu Q. Development of Inoculants for Aluminum Alloy: A Review. Materials. 2023; 16(15):5500. https://doi.org/10.3390/ma16155500
Chicago/Turabian StyleLiu, Shuiqing, Tong Zhao, Jinyuan Fu, and Qun Zu. 2023. "Development of Inoculants for Aluminum Alloy: A Review" Materials 16, no. 15: 5500. https://doi.org/10.3390/ma16155500
APA StyleLiu, S., Zhao, T., Fu, J., & Zu, Q. (2023). Development of Inoculants for Aluminum Alloy: A Review. Materials, 16(15), 5500. https://doi.org/10.3390/ma16155500