Surface Treatments for Enhancing the Bonding Strength of Aluminum Alloy Joints
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Surface Treatments and Specimen Preparation
2.3. Testing Methods and Devices
3. Results and Discussion
3.1. Surface Morphology and Roughness
3.2. Contact Angle
3.3. Strength Analysis
3.4. Failure Analysis
4. Conclusions
- (1)
- Laser ablation can reshape the original milling surface and greatly increase the Ra. However, it is not always conducive to improving surface wettability and bonding performance, depending on the geometric parameters of the dimple pattern;
- (2)
- The size relationship between the spacing and diameter of the dimples significantly affects the CA and failure mode. Those surfaces where the spacing is smaller than the diameter present a hydrophilic property, and the failure modes of corresponding specimens are mainly subject to cohesive failure and vice versa;
- (3)
- Geometric parameters, such as spacing and height of the dimples, greatly affect the bonding strength, while the diameter does not. And the maximum average shear strength of the specimens treated by laser ablation is about 32.82 MPa (at 30 μm spacing, 45 μm height, and 70 μm diameter), which is 28.15% higher than the original milling surface and approximately equivalent to the specimen treated by PAA;
- (4)
- Patterns can significantly affect CA and shear strength, in particular, combining with PAA surface. However, there is no distinct difference between groove pattern and grid pattern in CA and shear strength, whether PAA treatment is applied or not;
- (5)
- Microstructures fabricated by machining on a hydrophilic surface, such as the PAA surface, may significantly enhance the bonding strength, reaching up to 36.28 MPa. But the effect is slightly positive or even negative on a hydrophobic surface, like the milling surface, and the corresponding shear strength can reach down to 24.54 MPa, which is less than that of the milling specimen.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Boutar, Y.; Naimi, S.; Mezlini, S.; Ali, M.B.S. Effect of surface treatment on the shear strength of aluminium adhesive single-lap joints for automotive applications. Int. J. Adhes. Adhes. 2016, 67, 38–43. [Google Scholar] [CrossRef]
- Alderucci, T.; Borsellino, C.; Di Bella, G. Effect of surface pattern on strength of structural lightweight bonded joints for marine applications. Int. J. Adhes. Adhes. 2021, 117, 103005. [Google Scholar] [CrossRef]
- Scarselli, G.; Corcione, C.; Nicassio, F.; Maffezzoli, A. Adhesive joints with improved mechanical properties for aerospace applications. Int. J. Adhes. Adhes. 2017, 75, 174–180. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Xia, H.; Guo, L. Effects of assembly errors and bonding defects on the centroid drift of a precision sleeve structure. Adv. Manuf. 2021, 9, 509–519. [Google Scholar] [CrossRef]
- Adin, M.S.; Kilickap, E. Strength of double-reinforced adhesive joints. Mater. Test. 2021, 63, 176–181. [Google Scholar] [CrossRef]
- Guo, L.; Liu, J.; Xia, H.; Li, X.; Zhang, X.; Yang, H. Effect of surface morphology characteristic parameters on the shear strength of aluminum bonded joints. Int. J. Solids Struct. 2022, 238, 111420. [Google Scholar] [CrossRef]
- Correia, S.; Anes, V.; Reis, L. Effect of surface treatment on adhesively bonded aluminium-aluminium joints regarding aeronautical structures. Eng. Failure Anal. 2018, 84, 34–45. [Google Scholar] [CrossRef]
- Adin, H.; Saglam, Z.; Adin, M.S. Numerical investigation of fatigue behavior of non-patched and patched aluminum/composite plates. Eur. Mech. Sci. 2021, 5, 168–176. [Google Scholar] [CrossRef]
- Mechtold, S.; Kahlmeyer, M.; Winkel, A.; Bohm, S. Ageing-resistant bonding on stainless steels by laser treatment followed by flame silicatization. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2023. [Google Scholar] [CrossRef]
- Naat, N.; Boutar, Y.; Naimi, S.; Mezlini, S.; Da Silva, L.F.M. Effect of surface texture on the mechanical performance of bonded joints: A review. J. Adhes. 2023, 99, 166–258. [Google Scholar] [CrossRef]
- Guo, L.; Liu, J.; Xia, H.; Li, X.; Zhang, X.; Yang, H. Effects of surface treatment and adhesive thickness on the shear strength of precision bonded joints. Polym. Test. 2021, 94, 107063. [Google Scholar] [CrossRef]
- Awaja, F.; Gilbert, M.; Kelly, G.; Fox, B.; Pigram, P.J. Adhesion of polymers. Prog. Polym. Sci. 2009, 34, 948–968. [Google Scholar] [CrossRef]
- Da Silva, L.F.M.; Ferreira, N.M.A.J.; Richter-Trummer, V.; Marques, E.A.S. Effect of grooves on the strength of adhesively bonded joints. Int. J. Adhes. Adhes. 2010, 30, 735–743. [Google Scholar] [CrossRef]
- Li, G.; Lei, M.; Liang, C.; Li, K.; Li, B.; Wang, X.; Wang, J.; Wei, Z. Improving adhesive bonding of Al alloy by laser-induced micro-nano structures. Appl. Sci. 2022, 12, 1199. [Google Scholar] [CrossRef]
- Asl, S.K.; Sohi, M.H. Effect of grit-blasting parameters on the surface roughness and adhesion strength of sprayed coating. Surf. Interface Anal. 2010, 42, 551–554. [Google Scholar] [CrossRef]
- Raszewski, Z.; Brzakalski, D.; Derpenski, L.; Jalbrzykowski, M.; Przekop, R.E. Aspects and principles of material connections in restorative dentistry-a comprehensive review. Materials 2022, 15, 7131. [Google Scholar] [CrossRef] [PubMed]
- Matei, A.; Tutunaru, O.; Tucureanu, V. Surface pre-treatment of aluminum alloys for the deposition of composite materials. Mater. Sci. Eng. B Adv. 2021, 263, 114874. [Google Scholar] [CrossRef]
- Mohseni, M.; Mirabedini, M.; Hashemi, M.; Thompson, G.E. Adhesion performance of an epoxy clear coat on aluminum alloy in the presence of vinyl and amino-silane primers. Prog. Org. Coat. 2006, 57, 307–313. [Google Scholar] [CrossRef]
- Min, J.; Wan, H.; Carlson, B.E.; Lin, J.; Sun, C. Application of laser ablation in adhesive bonding of metallic materials: A review. Opt. Laser Technol. 2020, 128, 106188. [Google Scholar] [CrossRef]
- Forster, D.J.; Jaggi, B.; Michalowski, A.; Neuenschwander, B. Review on experimental and theoretical investigations of ultra-short pulsed laser ablation of metals with burst pulses. Materials 2021, 14, 3331. [Google Scholar] [CrossRef]
- Wong, R.C.P.; Hoult, A.P.; Kim, J.K.; Yu, T.X. Improvement of adhesive bonding in aluminium alloys using a laser surface texturing process. J. Mater. Process. Technol. 1997, 63, 579–584. [Google Scholar] [CrossRef]
- Critchlow, G.W.; Brewis, D.M.; Emmony, D.C.; Cottam, C.A. Initial investigation into the effectiveness of CO2-laser treatment of aluminium for adhesive bonding. Int. J. Adhes. Adhes. 1995, 15, 233–236. [Google Scholar] [CrossRef]
- Critchlow, G.W.; Cottam, C.A.; Brewis, D.M.; Emmony, D.C. Further studies into the effectiveness of CO2-laser treatment of metals for adhesive bonding. Int. J. Adhes. Adhes. 1997, 17, 143–150. [Google Scholar] [CrossRef]
- Spadaro, C.; Sunseri, C.; Dispenza, C. Laser surface treatments for adhesion improvement of aluminium alloys structural joints. Radiat. Phys. Chem. 2007, 76, 1441–1446. [Google Scholar] [CrossRef]
- Baburaj, E.G.; Starikov, D.; Evans, J.; Shafeev, G.A.; Bensaoula, A. Enhancement of adhesive joint strength by laser surface modification. Int. J. Adhes. Adhes. 2007, 27, 268–276. [Google Scholar] [CrossRef]
- Alfano, M.; Ambrogio, G.; Crea, F.; Filice, L.; Furgiuele, F. Influence of laser surface modification on bonding strength of Al/Mg adhesive joints. J. Adhes. Sci. Technol. 2011, 25, 1261–1276. [Google Scholar] [CrossRef]
- Romoli, L.; Moroni, F.; Khan, M.M.A. A study on the influence of surface laser texturing on the adhesive strength of bonded joints in aluminium alloys. CIRP Ann. Manuf. Technol. 2017, 66, 237–240. [Google Scholar] [CrossRef]
- Loutas, T.H.; Kliafa, P.M.; Sotiriadis, G.; Kostopoulos, V. Investigation of the effect of green laser pre-treatment of aluminum alloys through a design-of-experiments approach. Surf. Coat. Technol. 2019, 375, 370–382. [Google Scholar] [CrossRef]
- Zhu, C.; Wan, H.; Min, J.; Mei, Y.; Lin, J.; Carlson, B.E.; Maddela, S. Application of pulsed Yb: Fiber laser to surface treatment of Al alloys for improved adhesive bonded performance. Opt. Lasers Eng. 2019, 119, 65–76. [Google Scholar] [CrossRef]
- Wan, H.; Min, J.; Zhang, J.; Lin, J.; Sun, C. Effect of adherend deflection on lap-shear tensile strength of laser-treated adhesive-bonded joints. Int. J. Adhes. Adhes. 2020, 97, 102481. [Google Scholar] [CrossRef]
- Mandolfino, C.; Obeidi, M.; Lertora, E.; Brabazon, D. Comparing the adhesion strength of 316L stainless steel joints after laser surface texturing by CO2 and fiber lasers. Int. J. Adv. Manuf. Technol. 2020, 109, 1059–1069. [Google Scholar] [CrossRef]
- Chen, J.; Li, Y.; Huang, M.; Dong, L. Tailoring Al-Li alloy surface wettability with a femtosecond laser and its effect on bonding performance. Coatings 2021, 11, 995. [Google Scholar] [CrossRef]
- Cakir, F.H. Enhancing the adhesive bonding strength of Ti6Al4V sheets with fiber laser texturing. Int. J. Adhes. Adhes. 2022, 114, 103117. [Google Scholar] [CrossRef]
- Prakash, S. Comparison of adhesive joint strength of laser fabricated dimple textured Al-Mg alloy in different environment. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023. [Google Scholar] [CrossRef]
- Andarabi, A.A.; Shelesh-Nezhad, K.; Chakherlou, T.N. The effect of laser surface structuring patterns on the interfacial resistance of aluminum joints bonded with epoxy adhesive. Int. J. Adhes. Adhes. 2022, 114, 103101. [Google Scholar] [CrossRef]
- ASTM D1002-10; Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal). ASTM International: West Conshohocken, PA, USA, 2010.
- Adin, M.S.; Okumus, M. Investigation of microstructural and mechanical properties of dissimilar metal weld between AISI 420 and AISI 1018 Steels. Arab. J. Sci. Eng. 2022, 47, 8341–8350. [Google Scholar] [CrossRef]
- Adin, M.S. A parametric study on the mechanical properties of MIG and TIG welded dissimilar steel joints. J. Adhes. Sci. Technol. 2023. [Google Scholar] [CrossRef]
- Guo, L.; Liu, J.; Xia, H.; Li, X.; Zhang, X.; Yang, H.; Yang, Y. Effects of loading rate, temperature, and thickness on the tensile strength of precision adhesive joints. Polym. Test. 2022, 109, 107528. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Blackman, B.R.K.; Eduardo, S. Mimicking nature to control bio-material surface wetting and adhesion. Int. Mater. Rev. 2022, 67, 658–681. [Google Scholar] [CrossRef]
Name of Parameters | Values |
---|---|
Power (W) | 50 |
Wavelength (nm) | 1064 |
Spot diameter (μm) | 30 |
Focal distance (mm) | 160 |
Nature of Groups | Treatment Methods | Parameters |
---|---|---|
Control groups | Original (Milling) | Plane milling, flatness tolerance ≤ 0.015 mm. |
PAA | 120–160 g/L phosphoric acid solution with a voltage 10 ± 0.5 V (DC) for 20 ± 1 min at 20 ± 5 °C solution temperature. | |
Test groups | Laser ablation | Spacing T, height H, and diameter D Specimen 1: T 120 μm, H 30 μm, D 60 μm; Specimen 2: T 60 μm, H 30 μm, D 60 μm; Specimen 3: T 30 μm, H 30 μm, D 60 μm; Specimen 4: T 30 μm, H 15 μm, D 60 μm; Specimen 5: T 30 μm, H 45 μm, D 60 μm; Specimen 6: T 30 μm, H 45 μm, D 45 μm; Specimen 7: T 30 μm, H 45 μm, D 70 μm. |
Machining | Specimen 8: Groove pattern with 0.6 mm spacing, 0.4 mm width, and 0.2 mm depth. | |
Specimen 9: Grid pattern with 0.6 mm spacing, 0.4 mm width, and 0.2 mm depth. | ||
PAA and machining | Specimen 10: 120–160 g/L phosphoric acid solution with a voltage 10 ± 0.5 V (DC) for 20 ± 1 min at 20 ± 5 °C solution temperature, fabricated a groove pattern with 0.6 mm spacing, 0.4 mm width, and 0.2 mm depth. | |
Specimen 11: 120–160 g/L phosphoric acid solution with a voltage 10 ± 0.5 V (DC) for 20 ± 1 min at 20 ± 5 °C solution temperature, fabricated a grid pattern with 0.6 mm spacing, 0.4 mm width, and 0.2 mm depth. |
Treatments | Specimen Numbers | Ra (μm) |
---|---|---|
Milling | No definition | 0.352 ± 0.014 |
Laser ablation | 1 | 11.566 ± 0.596 |
2 | 19.799 ± 0.340 | |
3 | 27.829 ± 0.723 | |
4 | 17.025 ± 0.886 | |
5 | 25.785 ± 1.912 | |
6 | 26.574 ± 0.322 | |
7 | 26.959 ± 0.500 |
Treatments | Average Shear Strength (MPa) | Fluctuation (MPa) | ||
---|---|---|---|---|
Downward | Upward | |||
Milling | 25.61 | −0.79 | +0.96 | |
PAA | 33.45 | −0.42 | +0.56 | |
Laser ablation | Specimen 1 | 26.10 | −2.13 | +1.54 |
Specimen 2 | 29.20 | −0.39 | +0.58 | |
Specimen 3 | 32.34 | −0.50 | +0.74 | |
Specimen 4 | 28.67 | −1.08 | +0.96 | |
Specimen 5 | 32.11 | −1.31 | +1.66 | |
Specimen 6 | 31.46 | −1.68 | +1.47 | |
Specimen 7 | 32.82 | −1.05 | +1.86 | |
Machining | Specimen 8 | 25.46 | −0.64 | +0.84 |
Specimen 9 | 24.54 | −0.63 | +0.46 | |
PAA and machining | Specimen 10 | 36.28 | −0.45 | +0.85 |
Specimen 11 | 35.84 | −0.42 | +0.65 |
Source | SS | DF | MS | F Value | p Value |
---|---|---|---|---|---|
Factor A: spacing | 58.41 | 2 | 29.20 | 20.29 | 0.0021 |
Error | 8.64 | 6 | 1.44 | ||
Total | 67.04 | 8 | |||
Factor B: height | 22.98 | 2 | 11.49 | 7.92 | 0.0207 |
Error | 8.70 | 6 | 1.45 | ||
Total | 31.68 | 8 | |||
Factor C: diameter | 3.04 | 2 | 1.52 | 0.5 | 0.6282 |
Error | 18.13 | 6 | 3.02 | ||
Total | 21.17 | 8 | |||
Factor D: PAA (or not) | 366.97 | 1 | 366.97 | 831.8 | 0 |
Factor E: pattern | 1.39 | 1 | 1.39 | 3.14 | 0.1141 |
Interaction D×E | 0.17 | 1 | 0.17 | 0.39 | 0.5489 |
Error | 3.53 | 8 | 0.44 | ||
Total | 372.06 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Liu, J.; Xia, H.; Ao, X.; Yin, H.; Guo, L. Surface Treatments for Enhancing the Bonding Strength of Aluminum Alloy Joints. Materials 2023, 16, 5674. https://doi.org/10.3390/ma16165674
Luo J, Liu J, Xia H, Ao X, Yin H, Guo L. Surface Treatments for Enhancing the Bonding Strength of Aluminum Alloy Joints. Materials. 2023; 16(16):5674. https://doi.org/10.3390/ma16165674
Chicago/Turabian StyleLuo, Juncheng, Jianhua Liu, Huanxiong Xia, Xiaohui Ao, Haojie Yin, and Lei Guo. 2023. "Surface Treatments for Enhancing the Bonding Strength of Aluminum Alloy Joints" Materials 16, no. 16: 5674. https://doi.org/10.3390/ma16165674
APA StyleLuo, J., Liu, J., Xia, H., Ao, X., Yin, H., & Guo, L. (2023). Surface Treatments for Enhancing the Bonding Strength of Aluminum Alloy Joints. Materials, 16(16), 5674. https://doi.org/10.3390/ma16165674