Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors
Abstract
:1. Introduction
2. PbTe CQD-Based Photodetectors
2.1. Synthesis of PbTe CQDs
2.2. PbTe CQD Photodetectors
3. PbSe CQD-Based Photodetectors
3.1. Synthesis of PbSe CQDs
3.2. PbSe CQD Photodetectors
4. PbS CQD-Based Photodetectors
4.1. Synthesis of PbS CQDs
4.2. PbS CQD Photodetectors
- (1)
- The band structure of lead chalcogenide bulk materials is relatively fixed and difficult to control, resulting in a limited spectral tuning range. In contrast, the band structure of lead chalcogenide CQDs can be adjusted by tuning their size, thereby expanding the spectral tuning range and leading to broader potential applications.
- (2)
- Lead chalcogenide bulk semiconductor thin films are usually prepared using the chemical bath deposition method [79,80], which poses challenges in integrating bulk materials with silicon-based readout circuits. In contrast, CQDs are synthesized using a thermal injection method, leading to lower manufacturing costs for CQD detectors. Moreover, CQDs can be directly integrated with silicon-based readout circuits through solution processing, thereby expanding the potential applications of lead chalcogenide CQD photodetectors.
- (3)
- Photodetectors based on lead chalcogenide bulk materials need to undergo high-temperature sensitization at 300–600 °C in a specific atmosphere, such as an oxygen-rich and iodine-rich atmosphere [81]. However, the existing sensitization process lacks repeatability, stability, and uniformity, thereby restricting their application [82,83]. Lead chalcogenide CQD photodetectors can operate at room temperature, reducing the manufacturing cost and difficulty.
- (4)
- Lead chalcogenide CQD photodetectors can be self-assembled in vertical or horizontal directions, forming more complex structures. The feature provides lead chalcogenide CQD photodetectors with a distinct advantage in terms of integration and multi-channel detection.
5. Conclusions
- (1)
- CQD surface passivation. CQD have large surface to volume ratio. As a result, they are overly sensitive to the environment. Surface modification with organic or inorganic ligands could improve CQD stability and protect their physical properties. For instance, PbTe CQDs, are susceptible to oxidation, making them less suitable for photodetector applications. To address the problem of oxidation, surface modification techniques utilizing organic or inorganic ligands can be employed to enhance the stability and photoelectric conversion efficiency of PbTe CQDs. This improvement is expected to enhance the overall photoelectric performance and lifespan of photodetectors. In addition, the directional assembly of CQDs and the fine regulation of their optical properties can be achieved through surface modification.
- (2)
- Dark current reduction on CQD-based photodetectors. Compared with InGaAs and HgCdTe based photodetectors, CQD-based photodetectors typically suffer the disadvantage on large dark current. The dark current is usually generated by the surface defects on the CQDs, which can trap and recombine charges. Additionally, thermal excitation in CQD-based devices can lead to dark current generation. To solve this problem, reducing the surface defects and band tail regulation should be the key. In addition, transport property improvement would also be useful such as doping density and mobility modification.
- (3)
- Large array photodetectors. At present, most research focus on single-pixel CQD detectors. However, in real application, it is usually necessary to use array detectors. Large area array photodetectors can be prepared by nanoimprinting technology and micro-nano processing technology. There are many technical challenges need to be solved.
- (4)
- Broad band photodetectors. At present, the main research on lead based CQD photodetector could only cover near-infrared to short-wave infrared. More research is necessary to promote the progress on broad band photodetection. For example, combining PbS CQDs with graphene, perovskite, and other materials can achieve detection in the visible and near-infrared bands. Therefore, combining CQDs with other materials achieves the purpose of broad-spectrum detection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gmachl, C.; Capasso, F.; Sivco, D.L.; Cho, A.Y. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 2001, 64, 1533. [Google Scholar] [CrossRef]
- Lohse, S.E.; Murphy, C.J. Applications of Colloidal Inorganic Nanoparticles: From Medicine to Energy. J. Am. Chem. Soc. 2012, 134, 15607–15620. [Google Scholar] [CrossRef] [PubMed]
- Lhuillier, E.; Guyot-Sionnest, P. Recent Progresses in Mid Infrared Nanocrystal based Optoelectronics. IEEE J. Sel. Top. Quantum Electron. 2017, 23, 6000208. [Google Scholar] [CrossRef]
- Yadav, P.V.K.; Ajitha, B.; Kumar Reddy, Y.A.; Sreedhar, A. Recent advances in development of nanostructured photodetectors from ultraviolet to infrared region: A review. Chemosphere 2021, 279, 130473. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X. Recent Progress on Infrared Detectors: Materials and Applications. In Proceedings of the 4th International Conference on Electronic Science and Automation Control (ESAC), Bangkok, Thailand, 19–20 November 2022; Volume 27, pp. 191–200. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. InAs/GaSb type-II superlattice infrared detectors: Future prospect. Appl. Phys. Rev. 2017, 4, 31304. [Google Scholar] [CrossRef]
- DeWames, R.E.; Schuster, J. Performance and limitations of NIR and extended wavelength eSWIR InP/InGaAs image sensors. In Proceedings of the Quantum Sensing and Nano Electronics and Photonics XVII, San Francisco, CA, USA, 2–6 February 2020. [Google Scholar]
- Rogalski, A.; Martyniuk, P.; Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Prog. Quantum Electron. 2019, 68, 100228. [Google Scholar] [CrossRef]
- Bhan, R.K.; Dhar, V. Recent infrared detector technologies, applications, trends and development of HgCdTe based cooled infrared focal plane arrays and their characterization. Opto-Electron. Rev. 2019, 27, 174–193. [Google Scholar] [CrossRef]
- Wang, X.; Wang, M.; Liao, Y.; Zhang, H.; Zhang, B.; Wen, T.; Yi, J.; Qiao, L. Molecular-beam epitaxy-grown HgCdTe infrared detector: Material physics, structure design, and device fabrication. Sci. China Phys. Mech. Astron. 2023, 66, 237302. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Li, X.; He, J.; Yang, L.; Wang, J.; Yu, F.; Zhao, Z.; Shen, C.; Guo, H.; et al. High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. npj Quantum Mater. 2021, 6, 103. [Google Scholar] [CrossRef]
- Rothman, J. Physics and Limitations of HgCdTe APDs: A Review. J. Electron. Mater. 2018, 47, 5657–5665. [Google Scholar] [CrossRef]
- Ciura, Ł.; Kopytko, M.; Martyniuk, P. Low-frequency noise limitations of InAsSb-, and HgCdTe-based infrared detectors. Sens. Actuators A Phys. 2020, 305, 111908. [Google Scholar] [CrossRef]
- Batty, K.; Steele, I.; Copperwheat, C. Laboratory and On-sky Testing of an InGaAs Detector for Infrared Imaging. Publ. Astron. Soc. Pac. 2022, 134, 65001. [Google Scholar] [CrossRef]
- Livache, C.; Martinez, B.; Goubet, N.; Gréboval, C.; Qu, J.; Chu, A.; Royer, S.; Ithurria, S.; Silly, M.G.; Dubertret, B.; et al. A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat. Commun. 2019, 10, 2125. [Google Scholar] [CrossRef] [PubMed]
- De Arquer, F.P.G.; Talapin, D.V.; Klimov, V.I.; Arakawa, Y.; Bayer, M.; Sargent, E.H. Semiconductor quantum dots: Technological progress and future challenges. Science 2021, 373, eaaz8541. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yazdani, N.; Yarema, M.; Jansen, M.; Wood, V.; Sargent, E.H. Colloidal quantum dot electronics. Nat. Electron. 2021, 4, 548–558. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhou, X.; Tang, X.; Hao, Q.; Chen, M. Micro Spectrometers Based on Materials Nanoarchitectonics. Materials 2023, 16, 2253. [Google Scholar]
- Yan, N.; Qiu, Y.; He, X.; Tang, X.; Hao, Q.; Chen, M. Plasmonic Enhanced Nanocrystal Infrared Photodetectors. Materials 2023, 16, 3216. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J. High-sensitivity silicon: PbS quantum dot heterojunction near-infrared photodetector. Surf. Interfaces 2022, 30, 101945. [Google Scholar] [CrossRef]
- Liu, J.; Liu, P.; Chen, D.; Shi, T.; Qu, X.; Chen, L.; Wu, T.; Ke, J.; Xiong, K.; Li, M.; et al. A near-infrared colloidal quantum dot imager with monolithically integrated readout circuitry. Nat. Electron. 2022, 5, 443–451. [Google Scholar] [CrossRef]
- Zhang, S.; Bi, C.; Qin, T.; Liu, Y.; Cao, J.; Song, J.; Huo, Y.; Chen, M.; Hao, Q.; Tang, X. Wafer-Scale Fabrication of CMOS-Compatible Trapping-Mode Infrared Imagers with Colloidal Quantum Dots. ACS Photonics 2023, 10, 673–682. [Google Scholar] [CrossRef]
- Kim, J.Y.; Voznyy, O.; Zhitomirsky, D.; Sargent, E.H. 25th Anniversary Article: Colloidal Quantum Dot Materials and Devices: A Quarter-Century of Advances. Adv. Mater. 2013, 25, 4986–5010. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Bai, H.; Pan, L.; Li, Y.; Tamargo, M.C.; Sohel, M.; Lombardi, J.R. Size controlled synthesis of monodisperse PbTe quantum dots: Using oleylamine as the capping ligand. J. Mater. Chem. 2012, 22, 23593–23601. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Y.; Zhang, T.; Feng, Y.; Zhu, K.; Wang, D.; Cui, T.; Yin, J.; Wang, Y.; Zhao, J.; et al. Tunable near-Infrared Luminescence of PbSe Quantum Dots for Multigas Analysis. Anal. Chem. 2014, 86, 11312–11318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Crisp, R.W.; Gao, J.; Kroupa, D.M.; Beard, M.C.; Luther, J.M. Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots. J. Phys. Chem. Lett. 2015, 6, 1830–1833. [Google Scholar] [CrossRef]
- Wise, F.W. Lead Salt Quantum Dots: The Limit of Strong Quantum Confinement. Acc. Chem. Res. 2000, 33, 773–780. [Google Scholar] [CrossRef]
- Paufler, P. Landolt-Börnstein. Numerical data and functional relationships in science and technology. New Series, Editor in Chief: K. H. Hellwege. Group III, Crystal and Solid State Physics, Vol. 7, Crystal Structure Data of Inorganic Compounds, W. Pies, A. Weiss, Part b, Key Elements O, S, Se, Te, b3: Key Elements S, Se, Te, Editors: K. H. Hellwege, A.M. Hellwege, Springer-Verlag Berlin 1982, XXVII, 435 Seiten. Leinen, Preis: DM 740. Cryst. Res. Technol. 1983, 18, 1318. [Google Scholar]
- Reynoso, V.C.S.; de Paula, A.M.; Cuevas, R.F.; Medeiros Neto, J.A.; Cesar, C.L.; Barbosa, L.C. PbTe quantum dot doped glasses with absorption edge in the 1.5 μm wavelength region. Electron. Lett. 1995, 31, 1013–1015. [Google Scholar] [CrossRef]
- Murphy, J.E.; Beard, M.C.; Norman, A.G.; Ahrenkiel, S.P.; Johnson, J.C.; Yu, P.; Mićić, O.I.; Ellingson, R.J.; Nozik, A.J. PbTe Colloidal Nanocrystals: Synthesis, Characterization, and Multiple Exciton Generation. J. Am. Chem. Soc. 2006, 128, 3241–3247. [Google Scholar] [CrossRef]
- Urban, J.J.; Talapin, D.V.; Shevchenko, E.V.; Murray, C.B. Self-Assembly of PbTe Quantum Dots into Nanocrystal Superlattices and Glassy Films. J. Am. Chem. Soc. 2006, 128, 3248–3255. [Google Scholar] [CrossRef]
- Lambert, K.; Geyter, B.D.; Moreels, I.; Hens, Z. PbTe|CdTe Core|Shell Particles by Cation Exchange, a HR-TEM study. Chem. Mater. 2009, 21, 778–780. [Google Scholar] [CrossRef]
- Protesescu, L.; Zünd, T.; Bodnarchuk, M.I.; Kovalenko, M.V. Air-Stable, Near- to Mid-Infrared Emitting Solids of PbTe/CdTe Core-Shell Colloidal quantum dots. ChemPhysChem 2016, 17, 670–674. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.L.; de Wit, J.; Vanmaekelbergh, D. Sizing Curve, Absorption Coefficient, Surface Chemistry, and Aliphatic Chain Structure of PbTe Nanocrystals. Chem. Mater. 2019, 31, 1672–1680. [Google Scholar] [CrossRef] [PubMed]
- Miranti, R.; Shin, D.; Septianto, R.D.; Ibáñez, M.; Kovalenko, M.V.; Matsushita, N.; Iwasa, Y.; Bisri, S.Z. Exclusive Electron Transport in Core@Shell PbTe@PbS Colloidal Semiconductor Nanocrystal Assemblies. ACS Nano 2020, 14, 3242–3250. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Yang, Z.; Wang, P.; Wei, G.; He, A.; Guo, W.; Wang, M. Schottky-Ohmic Converted Contact, Fast-response, Infrared PbTe Photodetector with Stable Photoresponse in Air. RSC Adv. 2016, 6, 107878–107885. [Google Scholar] [CrossRef]
- Ten Kate, S.C.; Ritter, M.F.; Fuhrer, A.; Jung, J.; Schellingerhout, S.G.; Bakkers, E.P.A.M.; Riel, H.; Nichele, F. Small Charging Energies and g-Factor Anisotropy in PbTe Quantum Dots. Nano Lett. 2022, 22, 7049–7056. [Google Scholar] [CrossRef]
- Ma, W.; Swisher, S.L.; Ewers, T.; Engel, J.; Ferry, V.E.; Atwater, H.A.; Alivisatos, A.P. Photovoltaic Performance of Ultra small PbSe Quantum Dots. ACS Nano 2011, 5, 8140–8147. [Google Scholar] [CrossRef]
- Lipovskii, A.; Kolobkova, E.; Petrikov, V.; Kang, I.; Olkhovets, A.; Krauss, T.; Thomas, M.; Silcox, J.; Wise, F.; Shen, Q.; et al. Synthesis and characterization of PbSe quantum dots in phosphate glass. Appl. Phys. Lett. 1997, 71, 3406–3408. [Google Scholar] [CrossRef]
- Pietryga, J.M.; Schaller, R.D.; Werder, D.; Stewart, M.H.; Klimov, V.I.; Hollingsworth, J.A. Pushing the Band Gap Envelope: Mid-Infrared Emitting Colloidal PbSe Quantum Dots. J. Am. Chem. Soc. 2004, 126, 11752–11753. [Google Scholar] [CrossRef]
- Baek, I.C.; Seok, S.I.; Pramanik, N.C.; Jana, S.; Lim, M.A.; Ahn, B.Y.; Lee, C.J.; Jeong, Y.J. Ligand-dependent particle size control of PbSe quantum dots. J. Colloid Interface Sci. 2007, 310, 163–166. [Google Scholar] [CrossRef]
- Hughes, B.K.; Ruddy, D.A.; Blackburn, J.L.; Smith, D.K.; Bergren, M.R.; Nozik, A.J.; Johnson, J.C.; Beard, M.C. Control of PbSe Quantum Dot Surface Chemistry and Photophysics Using an Alkylselenide Ligand. ACS Nano 2012, 6, 5498–5506. [Google Scholar] [CrossRef]
- Campos, M.P.; Hendricks, M.P.; Beecher, A.N.; Walravens, W.; Swain, R.A.; Cleveland, G.T.; Hens, Z.; Sfeir, M.Y.; Owen, J.S. A Library of Selenourea Precursors to PbSe Nanocrystals with Size Distributions near the Homogeneous Limit. J. Am. Chem. Soc. 2017, 139, 2296–2305. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, F.; Shi, G.; Liu, Z.; Lin, X.; Shi, Y.; Chen, Y.; Meng, X.; Lv, Y.; Deng, W.; et al. PbSe Quantum Dot Solar Cells Based on Directly Synthesized Semiconductive Inks. ACS Energy Lett. 2020, 5, 3797–3803. [Google Scholar] [CrossRef]
- Sarasqueta, G.; Choudhury, K.R.; So, F. Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors. Chem. Mater. 2010, 22, 3496–3501. [Google Scholar] [CrossRef]
- Fu, C.; Wang, H.; Song, T.; Zhang, L.; Li, W.; He, B.; Sulaman, M.; Yang, S.; Zou, B. Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Nanotechnology 2016, 27, 65201. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zheng, L.; Yao, X.; Liu, L.; Huang, F.; Cao, Y.; Gong, X. Ultrasensitive Solution-Processed Broadband PbSe Photodetectors through Photomultiplication Effect. ACS Appl. Mater. Interfaces 2019, 11, 9205–9212. [Google Scholar] [CrossRef]
- Chen, P.; Wu, Z.; Shi, Y.; Li, C.; Wang, J.; Yang, J.; Dong, X.; Gou, J.; Wang, J.; Jiang, Y. High-performance silicon-based PbSe-CQDs infrared photodetector. J. Mater. Sci. Mater. Electron. 2021, 32, 9452–9462. [Google Scholar] [CrossRef]
- Peng, M.; Liu, Y.; Li, F.; Hong, X.; Liu, Y.; Wen, Z.; Liu, Z.; Ma, W.; Sun, X. Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors. ACS Appl. Mater. Interfaces 2021, 13, 51198–51204. [Google Scholar] [CrossRef]
- Wang, H.; Li, Z.; Fu, C.; Yang, D.; Zhang, L.; Yang, S.; Zou, B. Solution-Processed PbSe Colloidal Quantum Dot-Based Near-Infrared Photodetector. IEEE Photonics Technol. Lett. 2015, 27, 612–615. [Google Scholar] [CrossRef]
- Luo, P.; Zhuge, F.; Wang, F.; Lian, L.; Liu, K.; Zhang, J.; Zhai, T. PbSe Quantum Dots Sensitized High-Mobility Bi2O2Se Nanosheets for High-Performance and Broadband Photodetection Beyond 2 μm. ACS Nano 2019, 13, 9028–9037. [Google Scholar] [CrossRef]
- Peng, M.; Tao, Y.; Hong, X.; Liu, Y.; Wen, Z.; Sun, X. One-step synthesized PbSe nanocrystal inks decorated 2D MoS2 heterostructure for high stability photodetectors with photoresponse extending to near-infrared region. J. Mater. Chem. C 2022, 10, 2236–2244. [Google Scholar] [CrossRef]
- Hu, J.; Yang, S.; Zhang, Z.; Li, H.; Perumal Veeramalai, C.; Sulaman, M.; Saleem, M.I.; Tang, Y.; Jiang, Y.; Tang, L.; et al. Solution-processed, flexible and broadband photodetector based on CsPbBr3/PbSe quantum dot heterostructures. J. Mater. Sci. Technol. 2021, 68, 216–226. [Google Scholar] [CrossRef]
- Sulaman, M.; Yang, S.; Bukhtiar, A.; Tang, P.; Zhang, Z.; Song, Y.; Imran, A.; Jiang, Y.; Cui, Y.; Tang, L.; et al. Hybrid Bulk-Heterojunction of Colloidal Quantum Dots and Mixed-Halide Perovskite Nanocrystals for High-Performance Self-Powered Broadband Photodetectors. Adv. Funct. Mater. 2022, 32, 2201527. [Google Scholar] [CrossRef]
- Dortaj, H.; Dolatyari, M.; Zarghami, A.; Alidoust, F.; Rostami, A.; Matloub, S.; Yadipour, R. High-speed and high-precision PbSe/PbI2 solution process mid-infrared camera. Sci. Rep. 2021, 11, 1533. [Google Scholar] [CrossRef] [PubMed]
- Nenadovic, M.T.; Comor, M.I.; Vasic, V.; Micic, O.I. Transient Bleaching of Small PbS Colloids. Influence of Surface Properties. J. Phys. Chem. A 1990, 16, 6390–6396. [Google Scholar]
- Lingley, Z.; Lu, S.; Madhukar, A. A High Quantum Efficiency Preserving Approach to Ligand Exchange on Lead Sulfide Quantum Dots and Interdot Resonant Energy Transfer. Nano Lett. 2011, 11, 2887–2891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Song, J.; Zhang, J.; Wang, Y.; Zhang, S.; Miao, X. A facile and rapid synthesis of lead sulfide colloidal quantum dots using in situ generated H2S as the sulfur source. CrystEngComm 2013, 15, 2532–2536. [Google Scholar] [CrossRef]
- Lin, Q.; Yun, H.J.; Liu, W.; Song, H.; Makarov, N.S.; Isaienko, O.; Nakotte, T.; Chen, G.; Luo, H.; Klimov, V.I.; et al. Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. J. Am. Chem. Soc. 2017, 139, 6644–6653. [Google Scholar] [CrossRef]
- Shestha, A.; Yin, Y.; Andersson, G.G.; Spooner, N.A.; Qiao, S.; Dai, S. Versatile PbS Quantum Dot Ligand Exchange Systems in the Presence of Pb-Thiolates. Small 2017, 13, 1602956. [Google Scholar] [CrossRef]
- Shuklov, I.A.; Toknova, V.F.; Demkin, D.V.; Lapushkin, G.I.; Nikolenko, L.M.; Lizunova, A.A.; Brichkin, S.B.; Vasilets, V.N.; Razumov, V.F. A New Approach to the Synthesis of Lead Sulfide Colloidal Quantum Dots in a Mixture of Oleylamine and Oleic Acid. High Energy Chem. 2020, 54, 183–188. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Jia, Y.; Wang, H.; Li, X.; Liu, S.; Liu, X.; Zhu, H.; Wang, H.; Liu, Y.; et al. Precursor Chemistry Enables the Surface Ligand Control of PbS Quantum Dots for Efficient Photovoltaics. Adv. Sci. 2023, 10, 2204655. [Google Scholar] [CrossRef]
- Konstantatos, G.; Howard, I.; Fischer, A.; Hoogland, S.; Clifford, J.; Klem, E.; Levina, L.; Sargent, E.H. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006, 442, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, M.; Voznyy, O.; Hu, L.; Fu, Q.; Zhou, D.; Xia, Z.; Sargent, E.H.; Tang, J. Physically Flexible, Rapid-Response Gas Sensor Based on Colloidal Quantum Dot Solids. Adv. Mater. 2014, 26, 2718–2724. [Google Scholar] [CrossRef] [PubMed]
- De Iacovo, A.; Venettacci, C.; Colace, L.; Scopa, L.; Foglia, S. PbS Colloidal Quantum Dot Photodetectors operating in the near infrared. Sci. Rep. 2016, 6, 37913. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Sun, J.; Li, H.; Mao, P.; Wei, Y.; Zhong, X.; Hu, J.; Yang, S.; Wang, J. Bilayer PbS Quantum Dots for High-Performance Photodetectors. Adv. Mater. 2017, 29, 1702055. [Google Scholar] [CrossRef]
- Qiao, K.; Cao, Y.; Yang, X.; Khan, J.; Deng, H.; Zhang, J.; Farooq, U.; Yuan, S.; Song, H. Efficient interface and bulk passivation of PbS quantum dot infrared photodetectors by PbI2 incorporation. RSC Adv. 2017, 7, 52947–52954. [Google Scholar] [CrossRef]
- Xu, K.; Xiao, X.; Zhou, W.; Jiang, X.; Wei, Q.; Chen, H.; Deng, Z.; Huang, J.; Chen, B.; Ning, Z. Inverted Si:PbS Colloidal Quantum Dot Heterojunction-Based Infrared Photodetector. ACS Appl. Mater. Interfaces 2020, 12, 15414–15421. [Google Scholar] [CrossRef]
- Shi, Y.; Wu, Z.; Xiang, Z.; Chen, P.; Li, C.; Zhou, H.; Dong, X.; Gou, J.; Wang, J.; Jiang, Y. Silicon-based PbS-CQDs infrared photodetector with high sensitivity and fast response. Nanotechnology 2020, 31, 485206. [Google Scholar] [CrossRef]
- Szendrei, K.; Cordella, F.; Kovalenko, M.V.; Böberl, M.; Hesser, G.; Yarema, M.; Jarzab, D.; Mikhnenko, O.V.; Gocalinska, A.; Saba, M.; et al. Solution-Processable Near-IR Photodetectors Based on Electron Transfer from PbS Nanocrystals to Fullerene Derivatives. Adv. Mater. 2009, 21, 683–687. [Google Scholar] [CrossRef]
- He, J.; Qiao, K.; Gao, L.; Song, H.; Hu, L.; Jiang, S.; Zhong, J.; Tang, J. Synergetic Effect of Silver Nanocrystals Applied in PbS Colloidal Quantum Dots for High-Performance Infrared Photodetectors. ACS Photonics 2014, 1, 936–943. [Google Scholar] [CrossRef]
- Bessonov, A.A.; Allen, M.; Liu, Y.; Malik, S.; Bottomley, J.; Rushton, A.; Medina-Salazar, I.; Voutilainen, M.; Kallioinen, S.; Colli, A.; et al. Compound Quantum Dot–Perovskite Optical Absorbers on Graphene Enhancing Short-Wave Infrared Photodetection. ACS Nano 2017, 11, 5547–5557. [Google Scholar] [CrossRef]
- Ka, I.; Gerlein, L.F.; Asuo, I.M.; Bouzidi, S.; Gedamu, D.M.; Pignolet, A.; Rosei, F.; Nechache, R.; Cloutier, S.G. Solution-Processed p-Type Copper Thiocyanate (CuSCN) Enhanced Sensitivity of PbS-Quantum-Dots-Based Photodiode. ACS Photonics 2020, 7, 1628–1635. [Google Scholar] [CrossRef]
- Klem, E.J.D.; Gregory, C.; Temple, D.; Lewis, J.S. PbS colloidal quantum dot photodiodes for low-cost SWIR sensing. In Proceedings of the SPIE Defense + Security Symposium, Baltimore, MD, USA, 20–24 April 2015. [Google Scholar]
- Goossens, S.; Navickaite, G.; Monasterio, C.; Gupta, S.; Piqueras, J.J.; Pérez, R.; Burwell, G.; Nikitskiy, I.; Lasanta, T.; Galán, T.; et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photonics 2017, 11, 366–371. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, J.; Chen, T.; Gao, X.; Wang, S. Toward Broadband Imaging: Surface-Engineered PbS Quantum Dot/Perovskite Composite Integrated Ultrasensitive Photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 44430–44437. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.T.; Kang, J.; Ahn, J.; Jin, J.; Kim, J.; Park, S.; Kim, Y.; Kim, H.; Song, J.D.; Hwang, G.W.; et al. Zero-Dimensional PbS Quantum Dot–InGaZnO Film Heterostructure for Short-Wave Infrared Flat-Panel Imager. ACS Photonics 2020, 7, 1932–1941. [Google Scholar] [CrossRef]
- Georgitzikis, E.; Malinowski, P.E.; Li, Y.; Lee, J.; Süss, A.; Frazzica, F.; Maes, J.; Gielen, S.; Verstraeten, F.; Boulenc, P.; et al. Organic- and QD-based image sensors integrated on 0.13 μm CMOS ROIC for high resolution, multispectral infrared imaging. In Proceedings of the 2019 International Image Sensor Workshop (IISW), Snowbird, UT, USA, 23–27 June 2019. [Google Scholar]
- Kassim, A.; Ho, S.M.; Abdullah, A.H.; Nagalingam, S. XRD, AFM and UV-Vis optical studies of PbSe thin films produced by chemical bath deposition method. Sci. Iran. 2010, 17, 139–143. [Google Scholar]
- Begum, A.; Hussain, A.; Rahman, A. Effect of deposition temperature on the structural and optical properties of chemically prepared nanocrystalline lead selenide thin films. Beilstein J. Nanotechnol. 2012, 3, 438–443. [Google Scholar] [CrossRef]
- Kumar, P.; Pfeffer, M.; Schweda, E.; Eibl, O.; Qiu, J.; Shi, Z. PbSe mid-IR photoconductive thin films (part I): Phase analysis of the functional layer. J. Alloys Compd. 2017, 724, 316–326. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Fan, Y.; Tang, X.; Tan, G. Strategies for boosting thermoelectric performance of PbSe: A review. Chem. Eng. J. 2022, 431, 133699. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, X.; Li, T.; Chen, M. Trap-mode PbSe mid-infrared photodetector with decreased-temperature processing method. Infrared Phys. Technol. 2023, 133, 104788. [Google Scholar] [CrossRef]
Year | Photoactive Material | Detection Range (nm) | Detectivity (Jones) | Responsivity (A/W) | Rise Decay Time | Refs. |
---|---|---|---|---|---|---|
2006 | PbS CQDs | 1300 | 1.8 × 1013 | 103 | -- | [63] |
2009 | PbS CQDs/PCBM | 1200 | 2.5 × 1010 | 1.6 | -- | [70] |
2010 | PbSe CQDs | 1400 | -- | 0.67 | -- | [45] |
2014 | PbS CQDs/Ag NCs | 1100 | 1.7 × 1010 | 0.0038 | -- | [71] |
2015 | PbSe CQDs/P3HT | 980 | 5.05 × 1012 | 500 | -- | [50] |
2016 | PbSe CQDs | 980 | 5.08 × 1010 | 0.06417 | -- | [46] |
2016 | PbTe CQDs | 1064 | -- | 0.0019 | 0.39 ms 0.49 ms | [36] |
2016 | PbS CQDs | 1300 | 2 × 1010 | 30 | 160 ms 3 s | [65] |
2017 | PbS-EDT/PbS-TABI | 580 | 1.71 × 1012 | 0.25 | 3.63 ms 29.56 ms | [66] |
2017 | PbS-EDT/PbS-PbI2 | 850 | 1013 | 0.43 | 5.3 μs 4.9 μs | [67] |
2017 | PbS CQDs/CH3NH3PbI3 | 520 | 5 × 1012 | 2 × 105 | 10 ms 0.5s | [72] |
2019 | PbS CQDs/CH3NH3PbI3 | 365/940 | 4.9 × 1013@365 nm 3.0 × 1011@940 nm | 255@365 nm 1.58@940 nm | 42 ms -- | [76] |
2019 | PbSe-TABI/PbSe-EDT | 1300/2400 | 1012@1300 nm 1011@2400 nm | 0.05–0.2 | 140 μs 410 μs | [47] |
2019 | PbSe CQDs/Bi2O2Se | 2000 | -- | 103 | 4 ms | [51] |
2020 | PbS-TABI/PbS-EDT | 1540 | 1.47 × 1011 | 0.264 | 2.04 μs 5.34 μs | [69] |
2020 | PbS CQDs/CuSCN | 532 | 1011 | -- | 50 μs 110 μs | [73] |
2021 | PbSe CQDs | 1550 | 7.48 × 1010 | 648.7 | 32.3 μs 73.2 μs | [48] |
2021 | PbSe CQDs | 808 | 1.86 × 1011 | 0.97 | 0.34 s 0.67 s | [49] |
2021 | PbSe CQDs/CsPbBr3 | 365 | 8.97 × 1012 | 7.17 | 0.5 ms 0.78 ms | [53] |
2022 | PbSe CQDs/MoS2 | 635/808 | 3.17 × 1010@635 nm 2.65 × 1010@808 nm | 23.5@635 nm 19.7@808 nm | 0.36s@635 nm; 0.38s@808 nm 0.52s@635 nm; 0.86s@808 nm | [52] |
2022 | PbSe CQDs/CsPbBr1.5I1.5 | 532 | 5.96 × 1013 | 6.16 | 350 ms 375 ms | [54] |
2022 | PbS CQDs | 940 | 2.1 × 1012 | -- | 1.15 μs 0.49 μs | [19] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Ma, H.; Cai, H.; Wei, Z.; Bi, Y.; Tang, X.; Qin, T. Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors. Materials 2023, 16, 5790. https://doi.org/10.3390/ma16175790
Zhao X, Ma H, Cai H, Wei Z, Bi Y, Tang X, Qin T. Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors. Materials. 2023; 16(17):5790. https://doi.org/10.3390/ma16175790
Chicago/Turabian StyleZhao, Xue, Haifei Ma, Hongxing Cai, Zhipeng Wei, Ying Bi, Xin Tang, and Tianling Qin. 2023. "Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors" Materials 16, no. 17: 5790. https://doi.org/10.3390/ma16175790
APA StyleZhao, X., Ma, H., Cai, H., Wei, Z., Bi, Y., Tang, X., & Qin, T. (2023). Lead Chalcogenide Colloidal Quantum Dots for Infrared Photodetectors. Materials, 16(17), 5790. https://doi.org/10.3390/ma16175790