Finishing Additively Manufactured Ti6Al4V Alloy with Low-Energy Electrical Discharges
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface Morphology Properties
3.2. Analysis of Surface Topography Properties
3.3. Prediction Models of Process
4. Conclusions
- Low-energy electrical discharges created a new surface layer with improved properties compared to those of the surface resulting from selective laser melting (SLM). Typical defects of the SLM surface, such as high roughness, unmelted particles, the balling effect, and the occurrence of microcracks, were minimized.
- The value of discharge energy directly influenced the surface integrity properties, characterized by surface morphology, the thickness and composition of the recast layer, amplitude, and specific topographic parameters. Decreasing the discharge energy led to improved surface integrity properties.
- Decreasing the discharge energy led to a reduction in locally induced thermal energy and the gradient of temperature delivered to the workpiece. The amount of material removed and re-solidified on the surface decreased. The maximum improvement of surface layer parameters was achieved with a discharge energy value of E = 0.21 mJ. The surface was uniform, with a significant reduction in the occurrence of microcracks. The recast layer thickness was about 4 μm. The reduction in roughness parameters Sa, Sp, and Sv was about 70%, 45% and 46%, respectively.
- The relationship between power spectrum density and discharge energy indicates a significant correlation between electrical discharge energy and the amplitude and length of waves. Reducing the discharge energy led to an increase in the number of dominant peaks and a significant reduction in their height. As the energy of individual discharges increased, the frequency decreased, indicating an increase in surface roughness.
- The relationships between discharge energy, roughness (Sa), and MRR exhibited similar trends. As the discharge energy increased, the heat transferred to the workpiece also increased, leading to a growth in the volume of material that melted and vaporized. Consequently, the roughness amplitude increased, influencing the value of Sa and increasing the MRR.
- Wire speed and the time interval between discharges influenced the stability of the process, but these were not the main parameters affecting the material removal process. With an increase in the wire speed of the working electrode under constant discharge energy, roughness slightly increased. Reducing the time interval (toff) led to an increase in the frequency of electrical discharges, resulting in an increase in MRR. A local optimum was observed within the time range of 7–8 μs. However, reducing toff beyond this point did not lead to improved MRR.
- Wire speed had a minor impact on both MRR and Sa. Nonetheless, wire speed is crucial for sustainable material usage. A decrease in wire speed does not significantly alter the stability of the process, but it does markedly affect the consumption of natural resources and the cost of the electrode.
- Further studies should be carried out on the formation of the recast layer and its properties, including changes in elemental composition, XPS, nano-hardness, thickness, and residual stresses, as a function of discharge energy. Another important area of future research is to characterize the influence of the proposed finishing technology of additively manufactured parts on fatigue life.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Soliman, H.A.; Elbestawi, M. Titanium Aluminides Processing by Additive Manufacturing—A Review. Int. J. Adv. Manuf. Technol. 2022, 119, 5583–5614. [Google Scholar] [CrossRef]
- Singla, A.K.; Banerjee, M.; Sharma, A.; Singh, J.; Bansal, A.; Gupta, M.K.; Khanna, N.; Shahi, A.S.; Goyal, D.K. Selective Laser Melting of Ti6Al4V Alloy: Process Parameters, Defects and Post-Treatments. J. Manuf. Process. 2021, 64, 161–187. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, T.; Xu, C.; Zhao, L.; Song, H.; Huang, G. Study on the Tensile and Shear Behaviors of Selective Laser Melting Manufactured Ti6Al4V. Met. Mater. Int. 2023, 1–13. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Pramanik, A.; Basak, A.K.; Dong, Y.; Prakash, C.; Debnath, S.; Shankar, S.; Jawahir, I.S.; Dixit, S.; Buddhi, D. A Critical Review on Additive Manufacturing of Ti-6Al-4V Alloy: Microstructure and Mechanical Properties. J. Mater. Res. Technol. 2022, 18, 4641–4661. [Google Scholar] [CrossRef]
- Ojo, O.O.; Taban, E. Post-Processing Treatments–Microstructure–Performance Interrelationship of Metal Additive Manufactured Aerospace Alloys: A Review. Mater. Sci. Technol. 2023, 39, 1–41. [Google Scholar] [CrossRef]
- Bhandari, L.; Gaur, V. Different Post-Processing Methods to Improve Fatigue Properties of Additively Built Ti-6Al-4V Alloy. Int. J. Fatigue 2023, 176, 107850. [Google Scholar] [CrossRef]
- Sokolov, P.; Koshmin, A.; Aleschenko, A.; Patrin, P. Post-Processing Influence on Additively Produced Ti–6Al–4V Alloy Structure and Mechanical Properties. Mater. Sci. Technol. 2023, 39, 828–833. [Google Scholar] [CrossRef]
- Ge, J.; Pillay, S.; Ning, H. Post-Process Treatments for Additive-Manufactured Metallic Structures: A Comprehensive Review. J. Mater. Eng. Perform. 2023, 32, 7073–7122. [Google Scholar] [CrossRef]
- Airao, J.; Kishore, H.; Nirala, C.K. Measurement and Analysis of Tool Wear and Surface Characteristics in Micro Turning of SLM Ti6Al4V and Wrought Ti6Al4V. Measurement 2023, 206, 112281. [Google Scholar] [CrossRef]
- Teimouri, R.; Sohrabpoor, H.; Grabowski, M.; Wyszyński, D.; Skoczypiec, S.; Raghavendra, R. Simulation of Surface Roughness Evolution of Additively Manufactured Material Fabricated by Laser Powder Bed Fusion and Post-Processed by Burnishing. J. Manuf. Process. 2022, 84, 10–27. [Google Scholar] [CrossRef]
- De Oliveira, D.; Gomes, M.C.; Dos Santos, A.G.; Ribeiro, K.S.B.; Vasques, I.J.; Coelho, R.T.; Da Silva, M.B.; Hung, N.W. Abrasive and Non-Conventional Post-Processing Techniques to Improve Surface Finish of Additively Manufactured Metals: A Review. Prog. Addit. Manuf. 2022, 8, 223–240. [Google Scholar] [CrossRef]
- Alegre, J.M.; Díaz, A.; García, R.; Peral, L.B.; Cuesta, I.I. Effect of HIP Post-Processing at 850 °C/200 MPa in the Fatigue Behavior of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting. Int. J. Fatigue 2022, 163, 107097. [Google Scholar] [CrossRef]
- Cabrini, M.; Carrozza, A.; Lorenzi, S.; Pastore, T.; Testa, C.; Manfredi, D.; Fino, P.; Scenini, F. Influence of Surface Finishing and Heat Treatments on the Corrosion Resistance of LPBF-Produced Ti-6Al-4V Alloy for Biomedical Applications. J. Mater. Process. Technol. 2022, 308, 117730. [Google Scholar] [CrossRef]
- McKenna, T.; Tomonto, C.; Duggan, G.; Lalor, E.; O’Shaughnessy, S.; Trimble, D. Evaluation of Bimodal Microstructures in Selective-Laser-Melted and Heat-Treated Ti-6Al-4V. Mater. Des. 2023, 227, 111700. [Google Scholar] [CrossRef]
- Gisario, A.; Barletta, M.; Veniali, F. Laser Polishing: A Review of a Constantly Growing Technology in the Surface Finishing of Components Made by Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1433–1472. [Google Scholar] [CrossRef]
- Jaritngam, P.; Saetang, V.; Qi, H.; Dumkum, C. Surface Polishing of Additively Manufactured Ti6Al4V Titanium Alloy by Using a Nanosecond Pulse Laser. Int. J. Adv. Manuf. Technol. 2023, 127, 3463–3480. [Google Scholar] [CrossRef]
- Maharjan, N.; Ramesh, T.; Wang, Z. High Energy Laser Shock Peening of Ti6Al4V Alloy without Any Protective Coating. Appl. Surf. Sci. 2023, 638, 158110. [Google Scholar] [CrossRef]
- Acquesta, A.; Monetta, T.; Franchitti, S.; Borrelli, R.; Viscusi, A.; Perna, A.S.; Penta, F.; Esposito, L.; Carrino, L. Green Electrochemical Polishing of EBM Ti6Al4V Samples with Preliminary Fatigue Results. Int. J. Adv. Manuf. Technol. 2023, 126, 4269–4282. [Google Scholar] [CrossRef]
- Önder, S.; Saklakoğlu, N.; Sever, A. Selective Laser Melting of Ti6Al4V Alloy: Effect of Post-Processing on Fatigue Life, Residual Stress, Microstructure, Microhardness and Surface Roughness. Mater. Charact. 2023, 196, 112571. [Google Scholar] [CrossRef]
- Draelos, L.; Nandwana, P.; Srivastava, A. Implications of Post-Processing Induced Microstructural Changes on the Deformation and Fracture Response of Additively Manufactured Ti–6Al–4V. Mater. Sci. Eng. A 2020, 795, 139986. [Google Scholar] [CrossRef]
- Ming, W.; Cao, C.; Shen, F.; Zhang, Z.; Liu, K.; Du, J.; Jia, H. Numerical and Experimental Study on WEDM of BN-AlN-TiB2 Composite Ceramics Based on a Fusion FEM Model. J. Manuf. Process. 2022, 76, 138–154. [Google Scholar] [CrossRef]
- Straka, Ľ.; Dittrich, G. Influence of Tool Steel Properties on Surface Quality after Electrical Discharge Machining by Wire Electrode. Int. J. Adv. Manuf. Technol. 2020, 106, 1617–1632. [Google Scholar] [CrossRef]
- Wang, G.; Han, F. A Comparative Study on the Surface Integrity of Single-Step and Multi-Step Sequential Machining in Electric Discharge Machining. Int. J. Adv. Manuf. Technol. 2021, 114, 1803–1817. [Google Scholar] [CrossRef]
- Jithin, S.; Bhandarkar, U.V.; Joshi, S.S. Multi-Spark Model for Predicting Surface Roughness of Electrical Discharge Textured Surfaces. Int. J. Adv. Manuf. Technol. 2020, 106, 3741–3758. [Google Scholar] [CrossRef]
- Oniszczuk-Świercz, D.; Świercz, R.; Kopytowski, A.; Nowicki, R. Experimental Investigation and Optimization of Rough EDM of High-Thermal-Conductivity Tool Steel with a Thin-Walled Electrode. Materials 2023, 16, 302. [Google Scholar] [CrossRef]
- Mouralova, K.; Benes, L.; Prokes, T.; Zahradnicek, R.; Fries, J.; Plichta, T. Analysis of the Machinability of Different Types of Sintered Carbides with WEDM in Both Water and Oil Baths. Int. J. Adv. Manuf. Technol. 2023, 125, 2705–2715. [Google Scholar] [CrossRef]
- Żyra, A.; Bogucki, R.; Podolak-Lejtas, A.; Skoczypiec, S. Research on Influence of Heat Treatment Scheme of Ti10V2Fe3Al Alloy on Technological Surface Integrity after Electrodischarge Machining. J. Manuf. Process. 2021, 62, 47–57. [Google Scholar] [CrossRef]
- Buk, J. Surface Topography of Inconel 718 Alloy in Finishing WEDM. Adv. Sci. Technol. Res. J. 2022, 16, 47–61. [Google Scholar] [CrossRef]
- Liu, S.; Thangaraj, M.; Moiduddin, K.; Al-Ahmari, A.M. Influence of Adaptive Gap Control Mechanism and Tool Electrodes on Machining Titanium (Ti-6Al-4V) Alloy in EDM Process. Materials 2022, 15, 513. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D.; Zawora, J.; Marczak, M. Investigation of the Influence of Process Parameters on Shape Deviation after Wire Electrical Discharge Machining. Arch. Metall. Mater. 2019, 64, 1457–1462. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Tomczyk, K. Assessment of Measurement Uncertainties for Energy Signals Stimulating the Selected NiTi Alloys during the Wire Electrical Discharge Machining. Precis. Eng. 2022, 76, 133–140. [Google Scholar] [CrossRef]
- Mouralova, K.; Bednar, J.; Benes, L.; Prokes, T.; Zahradnicek, R.; Fries, J. Mathematical Models for Machining Optimization of Ampcoloy 35 with Different Thicknesses Using WEDM to Improve the Surface Properties of Mold Parts. Materials 2023, 16, 100. [Google Scholar] [CrossRef] [PubMed]
- Straka, Ľ.; Gombár, M.; Vagaská, A.; Kuchta, P. Efficiency Optimization of the Electroerosive Process in Μ-WEDM of Steel MS1 Sintered Using DMLS Technology. Micromachines 2022, 13, 1446. [Google Scholar] [CrossRef] [PubMed]
- Vagaská, A.; Gombár, M.; Straka, Ľ. Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice. Energies 2022, 15, 2205. [Google Scholar] [CrossRef]
- Machno, M.; Franczyk, E.; Bogucki, R.; Matras, A.; Zębala, W. A Comparative Study on the Structure and Quality of SLM and Cast AISI 316L Samples Subjected to WEDM Processing. Materials 2022, 15, 701. [Google Scholar] [CrossRef]
- Boban, J.; Ahmed, A. Electric Discharge Assisted Post-Processing Performance of High Strength-to-Weight Ratio Alloys Fabricated Using Metal Additive Manufacturing. CIRP J. Manuf. Sci. Technol. 2022, 39, 159–174. [Google Scholar] [CrossRef]
- Franczyk, E.; Machno, M.; Zębala, W. Investigation and Optimization of the SLM and WEDM Processes’ Parameters for the AlSi10Mg-Sintered Part. Materials 2021, 14, 410. [Google Scholar] [CrossRef]
- Song, K.Y.; Kim, G.H.; Shin, J. A Hybrid Manufacturing Process for a Microgripper Using Selective Laser Melting 3D Printing and Wire EDM. J. Mech. Sci. Technol. 2023, 37, 1931–1937. [Google Scholar] [CrossRef]
- Abhilash, P.M.; Ahmed, A. An Image-Processing Approach for Polishing Metal Additive Manufactured Components to Improve the Dimensional Accuracy and Surface Integrity. Int. J. Adv. Manuf. Technol. 2023, 125, 3363–3383. [Google Scholar] [CrossRef]
- Jithinraj, E.K.; Ahmed, A.; Boban, J. Improving the Surface Integrity of Additively Manufactured Curved and Inclined Metallic Surfaces Using Thermo-Electric Energy Assisted Polishing. Surf. Coat. Technol. 2022, 446, 128803. [Google Scholar] [CrossRef]
- Thasleem, P.; Kumar, D.; Joy, M.L.; Kuriachen, B. Effect of Heat Treatment and Electric Discharge Alloying on the Lubricated Tribology of Al–Si Alloy Fabricated by Selective Laser Melting. Wear 2022, 494–495, 204244. [Google Scholar] [CrossRef]
- Oniszczuk-Świercz, D.; Świercz, R.; Michna, Š. Evaluation of Prediction Models of the Microwire EDM Process of Inconel 718 Using ANN and RSM Methods. Materials 2022, 15, 8317. [Google Scholar] [CrossRef]
- Macek, W.; Martins, R.F.; Branco, R.; Marciniak, Z.; Szala, M.; Wroński, S. Fatigue Fracture Morphology of AISI H13 Steel Obtained by Additive Manufacturing. Int. J. Fract. 2022, 235, 79–98. [Google Scholar] [CrossRef]
- Sun, W.; Ma, Y.; Huang, W.; Zhang, W.; Qian, X. Effects of Build Direction on Tensile and Fatigue Performance of Selective Laser Melting Ti6Al4V Titanium Alloy. Int. J. Fatigue 2020, 130, 105260. [Google Scholar] [CrossRef]
- Yang, G.; Xie, Y.; Zhao, S.; Qin, L.; Wang, X.; Wu, B. Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-Powder-Melt Pool Interaction: A Review. Chin. J. Mech. Eng. Addit. Manuf. Front. 2022, 1, 100037. [Google Scholar] [CrossRef]
- Shahane, S.; Pande, S.S. Development of a Thermo-Physical Model for Multi-Spark Wire EDM Process. Procedia Manuf. 2016, 5, 205–219. [Google Scholar] [CrossRef]
- Xi, X.-C.; Li, Z.-L.; Gao, Q.; Zhang, Y.-O.; Zhao, W.-S. Observation and Simulation Investigation for the Crater Formation under Discharge Plasma Movement in RT-WEDM. Int. J. Adv. Manuf. Technol. 2023, 126, 145–162. [Google Scholar] [CrossRef]
- Zhao, C.; Bai, Y.; Zhang, Y.; Wang, X.; Xue, J.M.; Wang, H. Influence of Scanning Strategy and Building Direction on Microstructure and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel. Mater. Des. 2021, 209, 109999. [Google Scholar] [CrossRef]
- Tlili, A.; Ghanem, F.; Sidhom, H.; Braham, C. Behavior and Damage of the Near-Surface Layer of Parts Pre-Machined by the EDM Process. Int. J. Adv. Manuf. Technol. 2023, 126, 991–1003. [Google Scholar] [CrossRef]
- Esteves, P.M.B.; Wiessner, M.; Costa, J.V.M.R.; Sikora, M.; Wegener, K. WEDM Single Crater Asymmetry. Int. J. Adv. Manuf. Technol. 2021, 117, 2421–2427. [Google Scholar] [CrossRef]
- Boban, J.; Ahmed, A. Finishing the Surface Micro-Layer of Additively Manufactured TiAl Alloy Using Electro-Thermal Discharge Assisted Post-Processing. J. Micromanufacturing 2023, 25165984231151744. [Google Scholar] [CrossRef]
- Nieslony, P.; Wojciechowski, S.; Gupta, M.K.; Chudy, R.; Krolczyk, J.B.; Maruda, R.; Krolczyk, G.M. Relationship between Energy Consumption and Surface Integrity Aspects in Electrical Discharge Machining of Hot Work Die Steel. Sustain. Mater. Technol. 2023, 36, e00623. [Google Scholar] [CrossRef]
- Philip, J.T.; Mathew, J.; Kuriachen, B. Transition from EDM to PMEDM—Impact of Suspended Particulates in the Dielectric on Ti6Al4V and Other Distinct Material Surfaces: A Review. J. Manuf. Process. 2021, 64, 1105–1142. [Google Scholar] [CrossRef]
Build Direction | Z Direction on Plate |
---|---|
Dimension of build sample | 5 mm × 5 mm × 80 mm |
Build chamber | oxygen below 0.1% |
Titanium powder particles | 20 μm to 40 μm |
Laser power | 250 W |
Scanning speed | 400 mm/s |
Layer thickness | 30 μm |
Hatch spacing | 100 μm |
Electrode | Brass Wire, Diameter 0.25 mm |
---|---|
Workpiece material | Ti6Al4V |
Discharge energy, E | 0.21–1.46 mJ |
Open voltage, U0 | 220 V |
Dielectric | Deionized water |
Level | Parameter | ||
---|---|---|---|
Discharge Energy E (mJ) | Wire Speed (m/min) | Time Interval toff (µm) | |
−1.68 | 0.21 | 6 | 5 |
−1 | 0.42 | 7 | 6 |
0 | 0.74 | 9 | 8 |
1 | 1.04 | 11 | 10 |
1.68 | 1.46 | 12 | 11 |
Roughness Parameters | SLM Sample | Discharge Energy (mJ) | ||||
---|---|---|---|---|---|---|
0.21 | 0.42 | 0.74 | 1.05 | 1.46 | ||
Sa (µm) | 6.74 | 2.11 | 2.55 | 2.97 | 3.25 | 3.64 |
Sz (µm) | 90.3 | 28.9 | 28.99 | 33.54 | 40.69 | 47.03 |
Sv (µm) | 26.3 | 14.28 | 12.66 | 13.98 | 16.04 | 26.04 |
Sp (µm) | 64.0 | 14.59 | 16.33 | 19.56 | 24.64 | 21 |
Exp. no. | WEDP Input | Experimental Results | |||
---|---|---|---|---|---|
Discharge Energy E (mJ) | Wire Speed WS (m/min) | Time Interval toff (μs) | Sa (μm) | MRR (mm2/min) | |
1 | 0.42 | 7 | 6 | 2.55 | 27.4 |
2 | 0.42 | 7 | 10 | 2.57 | 23.4 |
3 | 0.42 | 11 | 6 | 2.59 | 28.8 |
4 | 0.42 | 11 | 10 | 2.58 | 25.1 |
5 | 1.05 | 7 | 6 | 3.37 | 43.1 |
6 | 1.05 | 7 | 10 | 3.13 | 41.8 |
7 | 1.05 | 11 | 6 | 3.41 | 46.7 |
8 | 1.05 | 11 | 10 | 3.25 | 44.3 |
9 | 0.21 | 9 | 8 | 2.11 | 16.9 |
10 | 1.46 | 9 | 8 | 3.64 | 49.5 |
11 | 0.74 | 6 | 8 | 2.96 | 38.5 |
12 | 0.74 | 12 | 8 | 3.13 | 41.1 |
13 | 0.74 | 9 | 5 | 3.18 | 39.9 |
14 | 0.74 | 9 | 11 | 2.94 | 37.1 |
15 | 0.74 | 9 | 8 | 2.99 | 39.2 |
16 | 0.74 | 9 | 8 | 2.96 | 39.4 |
17 | 0.74 | 9 | 8 | 2.93 | 39.6 |
18 | 0.74 | 9 | 8 | 2.97 | 39.5 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Prob > f | Contribution% |
---|---|---|---|---|---|---|
Model | 2.33 | 4 | 0.58 | 8.98 | ||
E | 2.18 | 1 | 2.18 | 438.25 | <0.0001 | 93.76 |
E2 | 0.08 | 1 | 0.08 | 16.67 | 0.002 | 3.57 |
WS | 0.02 | 1 | 0.02 | 9.46 | 0.024 | 0.74 |
toff | 0.04 | 1 | 0.04 | 9.02 | 0.010 | 1.93 |
Error | 0.06 | 13 | 0.06 | |||
Total SS | 2.39 | 17 | R2 = 0.97 | R2-adj = 0.96 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Value | Prob > f | Contribution% |
---|---|---|---|---|---|---|
Model | 1423.46 | 5 | 284.69 | 17.84 | ||
E | 1249.09 | 1 | 1249.09 | 939.29 | <0.0001 | 87.75 |
E2 | 133.23 | 1 | 133.23 | 100.19 | <0.0001 | 9.36 |
WS | 15.01 | 1 | 15.01 | 11.29 | 0.005 | 1.05 |
toff | 19.47 | 1 | 19.47 | 14.64 | 0.002 | 1.37 |
toff2 | 6.65 | 1 | 6.65 | 5.00 | 0.045 | 0.47 |
Error | 15.96 | 12 | 1.33 | |||
Total SS | 1302.46 | 17 | R2 = 0.99 | R2-adj = 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oniszczuk-Świercz, D.; Kopytowski, A.; Nowicki, R.; Świercz, R. Finishing Additively Manufactured Ti6Al4V Alloy with Low-Energy Electrical Discharges. Materials 2023, 16, 5861. https://doi.org/10.3390/ma16175861
Oniszczuk-Świercz D, Kopytowski A, Nowicki R, Świercz R. Finishing Additively Manufactured Ti6Al4V Alloy with Low-Energy Electrical Discharges. Materials. 2023; 16(17):5861. https://doi.org/10.3390/ma16175861
Chicago/Turabian StyleOniszczuk-Świercz, Dorota, Adrian Kopytowski, Rafał Nowicki, and Rafał Świercz. 2023. "Finishing Additively Manufactured Ti6Al4V Alloy with Low-Energy Electrical Discharges" Materials 16, no. 17: 5861. https://doi.org/10.3390/ma16175861
APA StyleOniszczuk-Świercz, D., Kopytowski, A., Nowicki, R., & Świercz, R. (2023). Finishing Additively Manufactured Ti6Al4V Alloy with Low-Energy Electrical Discharges. Materials, 16(17), 5861. https://doi.org/10.3390/ma16175861