Two-Dimensional Microstructure-Based Model for Evaluating the Permeability Coefficient of Heterogeneous Construction Materials
Abstract
:1. Introduction
2. Objectives
3. Model Development
3.1. Modelling of Aggregates and Mortar
3.2. Modelling of ITZ
3.3. Calculation of the Permeability Coefficient
3.4. FE Model Parameters
4. Experimental Measurements
4.1. Materials
4.2. Test Method and Results
5. Modeling Results and Discussion
5.1. Model Validation
5.2. Effects of Coarse Aggregate Content
5.3. Effects of Aggregate Mesoscopic Parameters
5.4. Effects of Aggregate Segregation
5.5. Effects of ITZ
6. Conclusions
- (1)
- The water−cement ratio of concrete greatly impacts permeability. The experimental results show that the lower w/c ratio leads to more impermeability. The proposed prediction method in this study shows acceptable accuracy, with a relative error of 1.73%.
- (2)
- The permeability coefficient of cement concrete gradually decreases with the increase in coarse aggregate content.
- (3)
- The permeability of aggregate significantly influences the effective permeability coefficient of concrete. The roundness of aggregates has little influence on the permeability coefficient of concrete. However, when the proportion of smaller-sized aggregates is higher, the ITZ increases, leading to a corresponding increase in the permeability coefficient.
- (4)
- The separation of cement concrete leads to the decrease of permeability coefficient. And the decrease is gradual in the 0–20% range, while it becomes more pronounced between 20% and 30%.
- (5)
- With the increase of ITZ thickness, the effective permeability coefficient of concrete increases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salemi, N.; Behfarnia, K. Effect of Nano-Particles on Durability of Fiber-Reinforced Concrete Pavement. Constr. Build. Mater. 2013, 48, 934–941. [Google Scholar] [CrossRef]
- Wang, T.; Xu, J.; Meng, B.; Peng, G. Experimental Study on the Effect of Carbon Nanofiber Content on the Durability of Concrete. Constr. Build. Mater. 2020, 250, 118891. [Google Scholar] [CrossRef]
- Yeih, W.; Chang, J.J. The influences of cement type and curing condition on properties of pervious concrete made with electric arc furnace slag as aggregates. Constr. Build. Mater. 2019, 197, 813–820. [Google Scholar] [CrossRef]
- Zhang, S.; Ghouleh, Z.; Azar, A.; Shao, Y. Improving concrete resistance to low temperature sulfate attack through carbonation curing. Mater. Struct. 2021, 54, 37. [Google Scholar] [CrossRef]
- Nilimaa, J. Smart Materials and Technologies for Sustainable Concrete Construction. Dev. Built Environ. 2023, 1, 100177. [Google Scholar] [CrossRef]
- Katz, A.J.; Thompson, A.H. Quantitative prediction of permeability in porous rock. Phys. Rev. B 1986, 34, 8179–8181. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, P.; Ding, H.; Le, C. Experimental Study on the Permeability of SAP Modified Concrete. Materials 2020, 13, 3368. [Google Scholar] [CrossRef]
- Zhou, Y.; Peng, Z.; Chen, L.; Huang, J.; Ma, T. The influence of two types of alkali activators on the microstructure and performance of supersulfated cement concrete: Mitigating the strength and carbonation resistance. Cem. Concr. Compos. 2021, 118, 103947. [Google Scholar] [CrossRef]
- Kapoor, K.; Singh, S.P.; Singh, B. Permeability of self-compacting concrete made with recycled concrete aggregates and Portland cement-fly ash-silica fume binder. J. Sustain. Cen.-Based Mater. 2020, 10, 213–239. [Google Scholar] [CrossRef]
- Wong, H.S.; Buenfeld, N.R. Euclidean Distance Mapping for computing microstructural gradients at interfaces in composite materials. Cem. Concr. Res. 2006, 36, 1091–1097. [Google Scholar] [CrossRef]
- Duraman, S.B.; Richardson, I.G. Microstructure & Properties of Steel-Reinforced Concrete Incorporating Portland Cement and Ground Granulated Blast Furnace Slag Hydrated at 20 °C. Cem. Concr. Res. 2020, 137, 106193. [Google Scholar]
- Oh, B.H.; Jang, S.Y. Prediction of diffusivity of concrete based on simple analytic equations. Cem. Concr. Res. 2004, 34, 463–480. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.; Wang, H.; Li, L. Evaluation of thermal conductivity of asphalt concrete with heterogeneous microstructure. Appl. Therm. Eng. 2015, 84, 368–374. [Google Scholar] [CrossRef]
- Liu, C.; Xie, D.; She, W.; Liu, Z.; Liu, G.; Yang, L.; Zhang, Y. Numerical modelling of elastic modulus and diffusion coefficient of concrete as a three-phase composite material. Constr. Build. Mater. 2018, 189, 1251–1263. [Google Scholar] [CrossRef]
- Tibbetts, C.M.; Tao, C.; Paris, J.M.; Ferraro, C.C. Mercury intrusion porosimetry parameters for use in concrete penetrability qualification using the Katz-Thompson relationship. Constr. Build. Mater. 2020, 263, 119834. [Google Scholar] [CrossRef]
- Shi, J.; Qian, R.; Wang, D.; Liu, Z.; Chun, Q.; Zhang, Y. Experimental study on gas permeability of cement-based materials. Cem. Concr. Compos. 2022, 129, 104491. [Google Scholar] [CrossRef]
- Tracz, T.; Zdeb, T. Effect of Hydration and Carbonation Progress on the Porosity and Permeability of Cement Pastes. Materials 2019, 12, 192. [Google Scholar] [CrossRef]
- Rossi, P. Determination of the Apparent Gas Permeability in a Macrocracked Concrete. Engineering 2022, 17, 93–98. [Google Scholar] [CrossRef]
- Sogbossi, H.; Verdier, J.; Multon, S. New approach for the measurement of gas permeability and porosity accessible to gas in vacuum and under pressure. Cem. Concr. Compos. 2019, 103, 59–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, S.; Gao, Y.; Guo, J.; Cao, Y.; Zhang, J. Correlation of chloride diffusion coefficient and microstructure parameters in concrete: A comparative analysis using NMR, MIP, and X-CT. Front. Struct. Civ. Eng. 2020, 14, 1509–1519. [Google Scholar] [CrossRef]
- Sun, H.; Gao, Y.; Zheng, X.; Chen, Y.; Jiang, Z.; Zhang, Z. Meso-Scale Simulation of Concrete Uniaxial Behavior Based on Numerical Modeling of CT Images. Materials 2019, 12, 3403. [Google Scholar] [CrossRef] [PubMed]
- Larbi, B.; Dridi, W.; Dangla, P.; Le Bescop, P. Link between microstructure and tritiated water diffusivity in mortars: Impact of aggregates. Cem. Concr. Res. 2016, 82, 92–99. [Google Scholar] [CrossRef]
- Chinchillas-Chinchillas, M.J.; Rosas-Casarez, C.A.; Arredondo-Rea, S.P.; Gomez-Soberon, J.M.; Corral-Higuera, R. SEM Image Analysis in Permeable Recycled Concretes with Silica Fume. A Quantitative Comparison of Porosity and the ITZ. Materials 2019, 12, 2201. [Google Scholar] [CrossRef] [PubMed]
- Ollivier, J.P.; Maso, J.C.; Bourdette, B. Interfacial transition zone in concrete. Adv. Cem. Based Mater. 1995, 2, 30–38. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Z.; Zhang, J.; Zhou, F.; Wang, Z.; Li, Z. Validation and Investigation on the Mechanical Behavior of Concrete Using a Novel 3D Mesoscale Method. Materials 2019, 12, 2647. [Google Scholar] [CrossRef]
- Xiong, Q.; Wang, X.; Jivkov, A.P. A 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete. Cem. Concr. Compos. 2020, 109, 103545. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Yu, H.; Ma, H.; Wu, Z. Experimental and 3D mesoscopic investigation of uniaxial compression performance on basic magnesium sulfate cement-coral aggregate concrete (BMSC-CAC). Compos. Part B Eng. 2022, 236, 109760. [Google Scholar] [CrossRef]
- Liang, M.; Feng, K.; He, C.; Li, Y.; An, L.; Guo, W. A meso-scale model toward concrete water permeability regarding aggregate permeability. Constr. Build. Mater. 2020, 261, 120547. [Google Scholar] [CrossRef]
- Li, X.; Xu, Q.; Chen, S. An experimental and numerical study on water permeability of concrete. Constr. Build. Mater. 2016, 105, 503–510. [Google Scholar] [CrossRef]
- Huang, J.; Luo, Z.; Khan, M.B.E. Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Constr. Build. Mater. 2020, 265, 120759. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, J.; Zhou, L.; Ni, F. Improving the calculation accuracy of FEM for asphalt mixtures in simulation of SCB test considering the mesostructure characteristics. Int. J. Pavement Eng. 2020, 23, 80–94. [Google Scholar] [CrossRef]
- Garboczi, E.J.; Bentz, D.P. Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete. Adv. Cem. Based Mater. 1998, 8, 77–88. [Google Scholar] [CrossRef]
- Zhang, M. Multiscale Lattice Boltzmann-Finite Element Modelling of Transport Properties in Cement-Based Materials. Ph.D. Thesis, Fuzhou University, Fuzhou, China, 2013. [Google Scholar]
- Han, G.; Qin, Z.; Zuo, S. Mechanical Properties and Microstructural Features of Biomass Fly Ash-Modified Self-Compacting Coal Gangue-Filled Backfill. Materials 2023, 16, 2789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ying, Z.X.; Chen, Z.W.; Wang, H.L.; Li, J.H.; Yue, H.; Zheng, J.J. Analytical Solution for Chloride Diffusivity of Concrete with Aggregate Shape Effect. Materials 2021, 14, 3957. [Google Scholar] [CrossRef]
- Fu, C.; Ling, Y.; Wang, K. An innovation study on chloride and oxygen diffusions in simulated interfacial transition zone of cementitious material. Cem. Concr. Compos. 2020, 110, 103585. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Xu, H.; Zeng, Y.; Wang, C.; Wang, L. Experimental Investigation on Permeability Evolution of Limestone Caprock under Coupled THM Processes. KSCE J. Civ. Eng. 2019, 23, 5090–5097. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Z.; Eshiet, K.I.-I.; Sheng, Y.; Liu, X.; Yang, D. Experimental Investigation of the Permeability and Mechanical Behaviours of Chemically Corroded Limestone under Different Unloading Conditions. Rock Mech. Rock Eng. 2019, 53, 1587–1603. [Google Scholar] [CrossRef]
- Lyu, C.; Hao, S.; Sun, Q.; Zhang, W.; Geng, J. Permeability evolution of two sedimentary rocks at different temperatures based on the Katz-Thompson theory. Int. J. Rock Mech. Min. Sci. 2021, 144, 104819. [Google Scholar] [CrossRef]
- Naderi, M.; Kaboudan, A. Experimental study of the effect of aggregate type on concrete strength and permeability. J. Build. Eng. 2021, 37, 101928. [Google Scholar] [CrossRef]
- Conzelmann, N.A.; Partl, M.N.; Clemens, F.J.; Müller, C.R.; Poulikakos, L.D. Effect of artificial aggregate shapes on the porosity, tortuosity and permeability of their packings. Powder Technol. 2022, 397, 117019. [Google Scholar] [CrossRef]
- Shen, L.; Bahrami Jovein, H.; Sun, Z.; Wang, Q.; Li, W. Testing dynamic segregation of self-consolidating concrete. Constr. Build. Mater. 2015, 75, 465–471. [Google Scholar] [CrossRef]
- Wimalasiri, M.; Robert, D.; Li, C.-Q. Permeability Degradation of Stressed Concrete Considering Concrete Plasticity. J. Mater. Civ. Eng. 2020, 32, 04020265. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, J.; Su, Y. Influence of vibration-induced segregation on mechanical property and chloride ion permeability of concrete with variable rheological performance. Constr. Build. Mater. 2019, 194, 32–41. [Google Scholar] [CrossRef]
Sieve size (mm) | 25.0 | 19.0 | 16.0 | 9.5 | 4.75 |
Passing percentage (%) | 100 | 68.0 | 48 | 30 | 0 |
No. | W/C | Cement | Water | Sand | Gravel |
---|---|---|---|---|---|
1 | 0.3 | 450 | 150 | 777 | 1073 |
2 | 0.4 | 450 | 180 | 766 | 1058 |
3 | 0.5 | 400 | 200 | 777 | 1073 |
4 | 0.5 | 525 | 263 | 1477 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yu, S.; Huang, W.; Wang, H. Two-Dimensional Microstructure-Based Model for Evaluating the Permeability Coefficient of Heterogeneous Construction Materials. Materials 2023, 16, 5892. https://doi.org/10.3390/ma16175892
Chen J, Yu S, Huang W, Wang H. Two-Dimensional Microstructure-Based Model for Evaluating the Permeability Coefficient of Heterogeneous Construction Materials. Materials. 2023; 16(17):5892. https://doi.org/10.3390/ma16175892
Chicago/Turabian StyleChen, Jiaqi, Shujun Yu, Wei Huang, and Hao Wang. 2023. "Two-Dimensional Microstructure-Based Model for Evaluating the Permeability Coefficient of Heterogeneous Construction Materials" Materials 16, no. 17: 5892. https://doi.org/10.3390/ma16175892
APA StyleChen, J., Yu, S., Huang, W., & Wang, H. (2023). Two-Dimensional Microstructure-Based Model for Evaluating the Permeability Coefficient of Heterogeneous Construction Materials. Materials, 16(17), 5892. https://doi.org/10.3390/ma16175892