Microstructure and Mechanical Properties of Ti/Al–SiC/Ti Clad Plates Prepared via the Powder-in-Tube Method
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Element Diffusion of Ti/Al–SiC/Ti Clad Plates
3.2. Peeling Strength of Ti/Al–SiC/Ti Clad Plates
3.3. Morphology of the Bonding Interface after Peeling
3.4. Tensile Strength of Ti/Al–SiC/Ti
3.5. Morphology of the Bonding Interface after Tensile Testing
4. Conclusions
- (1)
- Ti/Al–SiC/Ti clad plates were prepared by the powder-in-tube method, which can significantly improve the mechanical properties of clad plates and simplify the production process of clad plates;
- (2)
- Compared with the HA500 sample, the addition of 6 wt.% SiC particles enhanced the diffusion and thickened the intermetallic compound layer. HS1 corresponds to the best intermetallic compound layer thickness; the cracks are reduced compared to HS0.5, the diffusion layer thickness is greater than HS3 and no cracks or defects appear. The aggregation of nanoscale SiC particles has no significant effect on the obstruction of element diffusion, and the intermetallic compounds in the HS0.5 sample are thicker and have more cracks. The large SiC particle size in HS3 inhibits the diffusion of Ti and Al elements, and the thickness of the intermetallic compound layer is small;
- (3)
- The XRD results show that the diffusion layer is mainly a brittle TiAl3 phase. In the peel strength test, the TiAl3 content on the Ti side decreases with increasing grain size, while the TiAl3 content on the Al side has no significant difference with increasing grain size. After adding SiC particles to Ti/Al/Ti composite plates, the interface peeling strength of composite plates is 24.1 N/mm (HS0.5), 31.5 N/mm (HS1) and 16.7 N/mm (HS3), respectively, and all have different degrees of decrease;
- (4)
- Tensile cracking originates from the SiC agglomeration zone’s poor plasticity. SiC size and dispersion must be controlled to ensure Ti/Al–SiC/Ti composite plate contact bonding. The SiC agglomeration zone prevents dislocation migration during plastic deformation, increasing tensile strength. Large SiC particle agglomerates fracture during plastic deformation and lower the tensile strength of the Ti/Al–SiC/Ti composite plate. Thus, as SiC particle diameter rises, the tensile strength of the Ti/Al–SiC/Ti composite plate first increases and then drops from 270 MPa (HS0.5) to 305 MPa (HS1) to 296 MPa (HS3).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Habila, W.; Azzedine, H.; Mehdi, B.; Tirsatine, K.; Baudin, T.; Helbert, A.l.; Brisset, F.; Gautrot, S.; Mathon, M.H.; Bradai, D. Investigation of microstructure and texture evolution of a Mg/Al laminated composite elaborated by accumulative roll bonding. Mater. Charact. 2019, 147, 242–252. [Google Scholar] [CrossRef]
- Hosseini, M.; Pardis, N.; Manesh, H.D.; Abbasi, M.; Kim, D.I. Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB). Mater. Des. 2017, 113, 128–136. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Tayyebi, M.; Hashemi, R.; Faraji, G. Microstructure and mechanical properties of Al/Cu/Mg laminated composite sheets produced by the ARB proces. Int. J. Miner. Metall. Mater. 2018, 25, 564–572. [Google Scholar]
- Zuiko, R.; Kaibyshev, R. Effect of plastic deformation on the ageing behaviour of an Al-Cu-Mg alloy with a high Cu/Mg ratio. Mater. Sci. Eng. A 2018, 737, 401–412. [Google Scholar] [CrossRef]
- Anene, F.; Aiza Jaafar, C.; Zainol, I.; Azmah Hanim, M.; Suraya, M. Biomedical materials: A review of titanium based alloys. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021, 235, 788–792. [Google Scholar] [CrossRef]
- Vahid, Y.M.; Mohammad, R.T.; Ahmad, R. The effects of oxide film and annealing treatment on the bond strength of Al–Cu strips in cold roll bonding process. Mater. Des. 2014, 53, 174–181. [Google Scholar]
- Jafari, R.; Eghbali, B. Intermetallic growth behavior during post deformation annealing in multilayer Ti/Al/Nb composite interfaces. Int. J. Miner. Metall. Mater. 2022, 29, 233–244. [Google Scholar] [CrossRef]
- Assari, A.H.; Eghbali, B. Solid state diffusion bonding characteristics at the interfaces of Ti and Al layers. J. Alloys Compd. 2019, 773, 50–58. [Google Scholar] [CrossRef]
- Bataev, I.A.; Bataev, A.A.; Mali, V.I.; Pavliukova, D.V. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing. Mater. Des. 2012, 35, 225–234. [Google Scholar] [CrossRef]
- Kumakura, H.; Matsumoto, A.; Nakane, T.; Kitaguchi, H. Fabrication and properties of powder-in-tube-processed MgB2 tape conductors. Phys. C Supercond. 2007, 456, 196–202. [Google Scholar] [CrossRef]
- Chiba, R.; Nakamura, T.; Kuroda, M. Solid-state recycling of aluminum alloy swarf through cold profile extrusion and cold rolling. J. Mater. Process. Technol. 2011, 211, 1878–1887. [Google Scholar] [CrossRef]
- Gao, H.T.; Liu, X.H.; Qi, J.L.; Ai, Z.R.; Liu, L.Z. Microstructure and mechanical properties of Cu/Al/Cu clad strip processed by the powder-in-tube method. J. Mater. Process. Technol. 2018, 251, 1–11. [Google Scholar] [CrossRef]
- Springer, H.; Kostka, A.; Payton, E.J.; Raabe, D.; Kaysser-Pyzalla, A.; Eggeler, G.J.A.M. On the formation and growth of intermetallic phases during interdiffusion between low-carbon steel and aluminum alloys. Acta Mater. 2011, 59, 1586–1600. [Google Scholar] [CrossRef]
- Cao, J.; Wu, S.; Zhu, H.; Liu, Z.; Dou, Y.; Yang, W.; Huang, C.; He, X. The trapping effects of silicon and phosphorus on point defects in γ-Fe. Comput. Mater. Sci. 2022, 210, 111488. [Google Scholar] [CrossRef]
- Mondal, D.P.; Ganesh, N.V.; Muneshwar, V.S.; Das, S.; Ramakrishman, N. Effect of SiC concentration and strain rate on the compressive deformation behaviour of 2014A1-SiCp composite. Mater. Sci. Eng. A 2006, 433, 18–31. [Google Scholar] [CrossRef]
- Erturun, V.E.Y.S.E.L.; Karamis, M.B. The Influences of Reciprocating Extrusion Passes on the Microstructure Properties of Al 6061/SiC Composites. Powder Metall. Met. Ceram. 2018, 56, 617–624. [Google Scholar] [CrossRef]
- GB/T228.1-2021; Metal Material Tensile Test. Standards Press of China: Beijing, China, 2023.
- Keneshloo, M.; Paidar, M.; Taheri, M. Role of SiC ceramic particles on the physical and mechanical properties of Al-4%Cu metal matrix composite fabricated via mechanical alloying. J. Compos. Mater. 2017, 51, 1131–1137. [Google Scholar] [CrossRef]
- Yan, S.; Song, G.L.; Li, Z.; Wang, H.; Zheng, D.; Cao, F.; Horynova, M.; Dargusch, M.S.; Zhou, L. A state-of-the-art review on passivation and biofouling of Ti and its alloys in marine environments. J. Mater. Sci. Technol. 2018, 34, 421–435. [Google Scholar] [CrossRef]
- Sherif El-Eskandarany, M. Mechanical solid state mixing for synthesizing of SiC/Al nanocompositesp. J. Alloys Compd. 1998, 279, 263–271. [Google Scholar] [CrossRef]
- Fathy, A.; Sadoun, A.; Abddelhameed, M. Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al-SiC composites. Int. J. Adv. Manuf. Technol. 2014, 73, 1049–1056. [Google Scholar] [CrossRef]
Side | Sample | α-Ti | Al | TiAl3 | SiC |
---|---|---|---|---|---|
Ti | HS0.5 | 33.30 | 19.70 | 8.40 | 38.60 |
HS1 | 26.50 | 24.20 | 9.70 | 39.60 | |
HS3 | 42.90 | 10.50 | 7.80 | 38.80 | |
Al | HS0.5 | 55.30 | 5.10 | 8.40 | 31.10 |
HS1 | 42.60 | 11.50 | 7.70 | 38.30 | |
HS3 | 46.40 | 6.70 | 13.00 | 33.90 |
Portion | Ti (Atom %) | Al (Atom %) | Si (Atom %) | C (Atom %) |
---|---|---|---|---|
A | 67.92 | 27.08 | - | - |
B | 2.54 | 97.46 | - | - |
C | 91.22 | 7.99 | - | - |
D | 72.72 | 27.28 | - | - |
E | - | - | 51.38 | 48.62 |
Samples | Tensile Strength/MPa | Yield Strength/MPa | Elongation/% |
---|---|---|---|
HA500 | 250 | 182 | 31 |
HS0.5 | 270 | 195 | 20.7 |
HS1 | 305 | 220 | 26 |
HS3 | 296 | 211 | 27.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, X.; Xie, Q.; Yuan, Y.; Zhi, Y.; Liu, X. Microstructure and Mechanical Properties of Ti/Al–SiC/Ti Clad Plates Prepared via the Powder-in-Tube Method. Materials 2023, 16, 5986. https://doi.org/10.3390/ma16175986
Hu X, Xie Q, Yuan Y, Zhi Y, Liu X. Microstructure and Mechanical Properties of Ti/Al–SiC/Ti Clad Plates Prepared via the Powder-in-Tube Method. Materials. 2023; 16(17):5986. https://doi.org/10.3390/ma16175986
Chicago/Turabian StyleHu, Xianlei, Qincheng Xie, Yi Yuan, Ying Zhi, and Xianghua Liu. 2023. "Microstructure and Mechanical Properties of Ti/Al–SiC/Ti Clad Plates Prepared via the Powder-in-Tube Method" Materials 16, no. 17: 5986. https://doi.org/10.3390/ma16175986
APA StyleHu, X., Xie, Q., Yuan, Y., Zhi, Y., & Liu, X. (2023). Microstructure and Mechanical Properties of Ti/Al–SiC/Ti Clad Plates Prepared via the Powder-in-Tube Method. Materials, 16(17), 5986. https://doi.org/10.3390/ma16175986