Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Symmetric Ag/NH/Ag and Asymmetric Ag/NH/Ag
2.3. Characterization
2.4. Numerical Simulation
3. Results and Discussion
3.1. The Fabrication of Asymmetric Ag/NH/Ag
3.2. The Broadband Antireflection of Asymmetric Ag/NH/Ag
3.3. The Incident Angle Insensitivity of Asymmetric Ag/NH/Ag
3.4. The Optical Behavior Observed at Opposite Incident Angles of Asymmetric Ag/NH/Ag
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brongersma, M.L.; Cui, Y.; Fan, S. Light management for photovoltaics using high-index nanostructures. Nat. Mater. 2014, 13, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Shao, T.; Tang, F.; Sun, L.; Ye, X.; He, J.; Yang, L.; Zheng, W. Fabrication of antireflective transmission grating surface using a one-step self-masking method. Nanomaterials 2019, 9, 180. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.M.; Jang, S.J.; Yu, J.S.; Lee, Y.T. Bioinspired parabola subwavelength structures for improved broadband antireflection. Small 2010, 6, 984–987. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Jiang, X.; Huang, J.; Geng, F.; Sun, L.; Zu, X.; Wu, W.; Zheng, W. Formation of broadband antireflective and superhydrophilic subwavelength structures on fused silica using one-step self-masking reactive ion etching. Sci. Rep. 2015, 5, 13023. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, X.; Xu, Q.; Tian, C.; Wang, Q.; Xu, Y.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C.; et al. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv. Opt. Mater. 2018, 6, 1700773. [Google Scholar] [CrossRef]
- Yuan, J.; Yan, S.; Zhang, X. Superhydrophilic antifogging broadband antireflective coatings with worm-like nanostructures fabricated by one dip-coating method and calcination. Appl. Surf. Sci. 2020, 506, 144795. [Google Scholar] [CrossRef]
- Zhang, Z.; Martinsen, T.; Liu, G.; Tayyib, M.; Cui, D.; de Boer, M.J.; Karlsen, F.; Jakobsen, H.; Xue, C.; Wang, K. Ultralow broadband reflectivity in black silicon via synergy between hierarchical texture and specific-size Au nanoparticles. Adv. Opt. Mater. 2020, 8, 2000668. [Google Scholar] [CrossRef]
- Chen, T.A.; Yub, M.J.; Lu, Y.J.; Yen, T.J. Ultra-broadband, lithography-free, omnidirectional, and polarization-insensitive perfect absorber. Sci. Rep. 2021, 11, 5173. [Google Scholar] [CrossRef]
- Yang, C.; Ji, C.; Shen, W.; Lee, K.T.; Zhang, Y.; Liu, X.; Guo, L.J. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption. ACS Photonics 2016, 3, 590–596. [Google Scholar] [CrossRef]
- Ji, S.; Song, K.; Thanh Binh, N.; Kim, N.; Lim, H. Optimal moth eye nanostructure array on transparent glass towards broadband antireflection. ACS Appl. Mater. Interfaces 2013, 5, 10731–10737. [Google Scholar] [CrossRef]
- Park, H.; Shin, D.; Kang, G.; Baek, S.; Kim, K.; Padilla, W.J. Broadband optical antireflection enhancement by integrating antireflective nanoislands with silicon nanoconical-frustum arrays. Adv. Mater. 2011, 23, 5796–5800. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Han, S.Y.; Park, H.J. Omnidirectional flexible transmissive structural colors with high-color-purity and high-efficiency exploiting multicavity resonances. Adv. Opt. Mater. 2017, 5, 1700284. [Google Scholar] [CrossRef]
- Du, D.; Xu, Z.; Wang, L.; Guo, Y.; Liu, S.; Yu, T.; Wang, C.; Wang, F.; Wang, H. The broadband and omnidirectional antireflective performance of perovskite solar cells with curved nanostructures. Sol. Energy 2021, 224, 10–17. [Google Scholar] [CrossRef]
- Li, Z.; Lin, J.; Liu, Z.; Feng, S.; Liu, Y.; Wang, C.; Liu, Y.; Yang, S. Durable broadband and omnidirectional ultra-antireflective surfaces. ACS Appl. Mater. Interfaces 2018, 10, 40180–40188. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, Y.; Wang, Z.; Fang, Z.; Peng, L.M. Performance boosting of flexible ZnO UV sensors with rational designed absorbing antireflection layer and humectant encapsulation. ACS Appl. Mater. Interfaces 2016, 8, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Shu, P.; Ai, L.; Kong, Y.; Ji, H.; Lu, Y.; Zhang, J.; Song, W. UV-cured organic-inorganic composites for highly durable and flexible antireflection coatings. Appl. Surf. Sci. 2022, 584, 152600. [Google Scholar] [CrossRef]
- Wu, S.; Zha, D.; He, Y.; Miao, L.; Jiang, J. Design of stable and high-efficiency graphene-based polarizers for oblique angle of incidence in terahertz frequency. Appl. Opt. 2019, 58, 492–497. [Google Scholar] [CrossRef]
- Zhou, Y.; Yiwen, E.; Zhu, L.; Qi, M.; Xu, X.; Eai, J.; Ren, Z.; Wang, L. Terahertz wave reflection impedance matching properties of graphene layers at oblique incidence. Carbon 2016, 96, 1129–1137. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Khonina, S.N.; Butt, M.A. Plasmonic sensors based on Metal-insulator-metal waveguides for refractive index sensing applications: A brief review. Phys. E Low Dimens. Syst. Nanostruct. 2020, 117, 113798. [Google Scholar] [CrossRef]
- Barho, F.B.; Gonzalez Posada, F.; Cerutti, L.; Taliercio, T. Heavily doped semiconductor metamaterials for mid-infrared multispectral perfect absorption and thermal emission. Adv. Opt. Mater. 2020, 8, 1901502. [Google Scholar] [CrossRef]
- Zhao, D.; Gong, H.; Yang, Y.; Li, Q.; Qiu, M. Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures. Appl. Phys. Lett. 2013, 102, 201109. [Google Scholar] [CrossRef]
- Cai, A.; Tan, J. A broadband transparent window in a continuous metal film coated with double layer hybrid dielectric gratings. Opt. Commun. 2017, 403, 193–196. [Google Scholar] [CrossRef]
- Ai, B.; Gu, P.; Moehwald, H.; Zhang, G. Perforating domed plasmonic films for broadband and omnidirectional antireflection. Nanoscale 2016, 8, 15473–15478. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Shen, W.; Zhang, Y.; Peng, H.; Zhang, X.; Liu, X. Design and simulation of omnidirectional reflective color filters based on metal-dielectric-metal structure. Opt. Express 2014, 22, 11384–11391. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.G.; Pors, A.; Albrektsen, O.; Bozhevolnyi, S.I. Efficient absorption of visible radiation by gap plasmon resonators. Opt. Express 2012, 20, 13311–13319. [Google Scholar] [CrossRef]
- Zhu, K.; Yang, K.; Zhang, Y.; Yang, Z.; Qian, Z.; Li, N.; Li, L.; Jiang, G.; Wang, T.; Zong, S.; et al. Wearable SERS sensor based on omnidirectional plasmonic nanovoids array with ultra-high sensitivity and stability. Small 2022, 18, 2201508. [Google Scholar] [CrossRef]
- Toma, M.; Loget, G.; Corn, R.M. Fabrication of broadband antireflective plasmonic gold nanocone arrays on flexible polymer films. Nano Lett. 2013, 13, 6164–6169. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, D.; Li, Q.; Qiu, M. Double-sided polarization-independent plasmonic absorber at near-infrared region. Opt. Express 2013, 21, 13125–13133. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, Y.; Yang, J.; Li, J.; Feng, Y.; Quan, M.; Yang, Z.; Xiao, S. Synergistic plasmon resonance coupling and light capture in ordered nanoarrays as ultrasensitive and reproducible SERS substrates. Nanoscale 2020, 12, 18056–18066. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, B.; Tang, S.; Gao, Y.; Liu, S.; Sheng, Y.; Chen, J.; Dai, S.; Shen, X. Mid-infrared biomimetic moth-eye-shaped polarization-maintaining and angle-insensitive metalens. Opt. Express 2022, 30, 12048–12060. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Xu, Z.; Liu, Y.; Yu, Z.; Yu, L.; Chen, L.; Li, R.; Ma, R.; Ye, H. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 2018, 139, 104–111. [Google Scholar] [CrossRef]
- Wu, F.; Shi, G.; Xu, H.; Liu, L.; Wang, Y.; Qi, D.; Lu, N. Fabrication of antireflective compound eyes by imprinting. ACS Appl. Mater. Interfaces 2013, 5, 12799–12803. [Google Scholar] [CrossRef] [PubMed]
- Galeotti, F.; Trespidi, F.; Timo, G.; Pasini, M. Broadband and crack-free antireflection coatings by self-assembled moth eye patterns. ACS Appl. Mater. Interfaces 2014, 6, 5827–5834. [Google Scholar] [CrossRef] [PubMed]
- Kuang, P.; Eyderman, S.; Hsieh, M.L.; Post, A.; John, S.; Lin, S.Y. Achieving an Accurate Surface Profile of a Photonic Crystal for Near-Unity Solar Absorption in a Super Thin-Film Architecture. ACS Nano 2016, 10, 6116–6124. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Z.; Zhang, Z.; Wang, D.; Weng, Z. Fabrication of moth-eye structures on silicon by direct six-beam laser interference lithography. J. Appl. Phys. 2014, 115, 203101. [Google Scholar] [CrossRef]
- Ji, S.; Park, J.; Lim, H. Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: Flat antireflection and color tuning. Nanoscale 2012, 4, 4603–4610. [Google Scholar] [CrossRef]
- Leem, J.W.; Guan, X.Y.; Choi, M.; Yu, J.S. Broadband and omnidirectional highly-transparent coverglasses coated with biomimetic moth-eye nanopatterned polymer films for solar photovoltaic system applications. Sol. Energy Mater Sol. Cells 2015, 134, 45–53. [Google Scholar] [CrossRef]
- Shin, J.H.; Go, B.N.; Choi, J.H.; Kim, J.S.; Jung, G.Y.; Kim, H.; Lee, H. Fabrication of silica nanostructures with a microwave assisted direct patterning process. Nanotechnology 2014, 25, 225301. [Google Scholar] [CrossRef]
- Su, V.C.; Chu, C.H.; Sun, G.; Tsai, D.P. Advances in optical metasurfaces: Fabrication and applications. Opt. Express 2018, 26, 13148–13182. [Google Scholar] [CrossRef]
- Cai, J.; Qi, L. Recent advances in antireflective surfaces based on nanostructure arrays. Mater. Horizons 2015, 2, 37–53. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, R.; Li, Y.; You, S.; Lu, C.; Xu, W.; Ni, Y. Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption. Materials 2023, 16, 5988. https://doi.org/10.3390/ma16175988
Xia R, Li Y, You S, Lu C, Xu W, Ni Y. Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption. Materials. 2023; 16(17):5988. https://doi.org/10.3390/ma16175988
Chicago/Turabian StyleXia, Rong, Yang Li, Song You, Chunhua Lu, Wenbin Xu, and Yaru Ni. 2023. "Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption" Materials 16, no. 17: 5988. https://doi.org/10.3390/ma16175988
APA StyleXia, R., Li, Y., You, S., Lu, C., Xu, W., & Ni, Y. (2023). Asymmetric Plasmonic Moth-Eye Nanoarrays with Side Opening for Broadband Incident-Angle-Insensitive Antireflection and Absorption. Materials, 16(17), 5988. https://doi.org/10.3390/ma16175988