Effect of P2O5 Content on Luminescence of Reduced Graphene-Oxide-Doped ZnO–P2O5 Nano-Structured Films Prepared via the Sol–Gel Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zinc Phosphate Graphene-Doped Nanostructured Films Preparation
2.2. Investigating Methods
3. Results and Discussion
3.1. X-ray Diffraction (XRD) Investigations
3.2. Fourier-Transform Infrared Spectroscopy (FTIR) Investigations
3.3. UV–VIS–NIR Spectroscopy Investigations
3.4. SEM Spectroscopy Investigations
3.5. Photoluminescence Spectroscopy
3.6. Raman Analysis
3.7. Electrical Measurements
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Gong, M. ZnO/graphene heterostructure nanohybrids for optoelectronics and sensors. J. Appl. Phys. 2021, 130, 070905. [Google Scholar] [CrossRef]
- Padmanabhan, M.; Meyen, R.; Houghton, K. Facile fabrication of ZnO—Graphite composite thin films for ultraviolet photodetection. Mater. Res. Express 2018, 5, 095606. [Google Scholar] [CrossRef]
- Liu, Q.; Gong, M.; Cook, B.; Ewing, D.; Casper, M.; Stramel, A.; Wu, J. Transfer-free and printable graphene/ZnO-nanoparticle nanohybrid photodetectors with high performance. J. Mater. Chem. C 2017, 5, 6427–6432. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Heish, Y.-C.; Lee, C.-T. High sensitivity detection of nitrogen oxide gas at room temperature using zinc oxide-reduced graphene oxide sensing membrane. J. Alloys Compd. 2018, 773, 950–954. [Google Scholar] [CrossRef]
- Panth, M.; Cook, B.; Zhang, Y.; Ewing, D.; Tramble, A.; Wilson, A.; Wu, J. High-performance strain sensors based on vertically aligned piezoelectric zinc oxide nanowire array/graphene nanohybrids. ACS Appl. Nano Mater. 2020, 3, 6711–6718. [Google Scholar] [CrossRef]
- Sun, S.; Guo, L.; Chang, X.; Liu, Y.; Niu, S.; Lei, Y.; Liu, T.; Hu, X. A wearable strain sensor based on the ZnO/graphene nanoplatelets nanocomposite with large linear working range. J. Mater. Sci. 2019, 54, 7048–7061. [Google Scholar] [CrossRef]
- Qin, F.F.; Xu, C.X.; Zhu, Q.X.; Lu, J.F.; Chen, F.; You, D.T.; Zhu, Z.; Manohari, A.G. Optical performance improvement in hydrothermal ZnO/graphene structures for ultraviolet lasing. J. Mater. Chem. C 2018, 6, 3240–3244. [Google Scholar] [CrossRef]
- Briscoe, J.; Dunn, S. Piezoelectric nanogenerators—A review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29. [Google Scholar] [CrossRef]
- Akhavan, O. Graphene Nanomesh by ZnO Nanorod Photocatalysts. ACS Nano 2010, 4, 4174–4180. [Google Scholar] [CrossRef]
- Son, D.I.; Kwon, B.W.; Park, D.H.; Seo, W.-S.; Yi, Y.; Angadi, B.; Lee, C.-L.; Choi, W.K. Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 2012, 7, 465–471. [Google Scholar] [CrossRef]
- Ebnalwaled, A.; Abu El-Fadl, A.; Tuhamy, M. Synthesis and characterization of reduced graphene oxide/zinc oxide nanocomposites. Assiut Univ. J. Phys. 2019, 48, 45–69. [Google Scholar] [CrossRef]
- Boukhoubza, I.; Khenfouch, M.; Achehboune, M.; Leontie, L.; Galca, A.C.; Enculescu, M.; Carlescu, A.; Guerboub, M.; Mothudi, B.M.; Jorio, A.; et al. Graphene Oxide Concentration Effect on the Optoelectronic Properties of ZnO/GO Nanocomposites. Nanomaterials 2020, 10, 1532. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tan, T.; Zhao, Y.; Liu, N. Preparation of ZnO nanorods/graphene composite anodes for high-performance lithium-ion batteries. Nanomaterials 2018, 8, 966. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.N.; El Basaty, A.B.; Eid, E.A. Photo-response of functionalized self-assembled graphene oxide on zinc oxide heterostructure to UV illumination. Nanoscale Res. Lett. 2016, 11, 13. [Google Scholar] [CrossRef]
- Lee, E.; Kim, J.-Y.; Kwon, B.J.; Jang, E.-S.; An, S.J. Vacancy filling effect of graphene on photoluminescence behavior of ZnO/graphene nanocomposite. Phys. Status Solidi (RRL)-Rapid Res. Lett. 2014, 8, 836–840. [Google Scholar] [CrossRef]
- Biroju, R.K.; Giri, P.K.; Dhara, S.; Imakita, K.; Fujii, M. Graphene-assisted controlled growth of highly aligned ZnO nanorods and nanoribbons: Growth mechanism and photoluminescence properties. ACS Appl. Mater. Interfaces 2013, 6, 377–387. [Google Scholar] [CrossRef]
- Manikandan, E.; Kavitha, G.; Kennedy, J. Epitaxial zinc oxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 2014, 40, 16065–16070. [Google Scholar] [CrossRef]
- Luo, X.; Xu, L.; Xian, F.; Qian, H.; Wang, W. Effect of Al and Ag co-doping on the structural and optical properties of zinc oxide thin films. J. Optoelectron. Adv. Mater. 2022, 24, 487–493. [Google Scholar]
- Azarang, M.; Shuhaimi, A.; Yousefi, R.; Jahromi, S.P. One-pot sol–gel synthesis of reduced graphene oxide uniformly decorated zinc oxide nanoparticles in starch environment for highly efficient photodegradation of Methylene Blue. RSC Adv. 2015, 5, 21888–21896. [Google Scholar] [CrossRef]
- Singh, G.; Choudhary, A.; Haranath, D.; Joshi, A.G.; Singh, N.; Singh, S.; Pasricha, R. ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 2012, 50, 385–394. [Google Scholar] [CrossRef]
- Khenfouch, M.; Baïtoul, M.; Maaza, M. White photoluminescence from a grown ZnO nanorods/graphene hybrid nanostructure. Opt. Mater. 2012, 34, 1320–1326. [Google Scholar] [CrossRef]
- Rauwel, P.; Salumaa, M.; Aasna, A.; Galeckas, A.; Rauwel, E. A Review of the Synthesis and Photoluminescence Properties of Hybrid ZnO and Carbon Nanomaterials. J. Nanomater. 2016, 2016, 5320625. [Google Scholar] [CrossRef]
- Wang, J.D.; Li, D.; Liu, J.K.; Yang, X.H.; He, J.L.; Luo, H.J. One-Step Preparation and Characterization of Zinc Phosphate Nanocrystals with Modified Surface. Soft Nanosci. Lett. 2011, 1, 81–85. [Google Scholar] [CrossRef]
- Obreja, A.C.; Cristea, D.; Gavrila, R.; Schiopu, V.; Dinescu, A.; Danila, M.; Comanescu, F. Functionalized graphene/poly 3-hexyl thiophene based nanocomposites. In Proceedings of the CAS 2011 Proceedings (2011 International Semiconductor Conference), Sinaia, Romania, 17–19 October 2011; Volume 1, pp. 27–30. [Google Scholar] [CrossRef]
- PDF-ICDD. Powder Diffraction File (PDF-4+ 2022 Software 4.22.0.2); International Centre for Diffraction Data; 12 Campus Boulevard: Newtown Square, PA, USA, 2011. [Google Scholar]
- Scherrer, P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Göttinger Nachrichten Gesell 1918, 2, 98. [Google Scholar]
- Thongam, D.D.; Gupta, J.; Sahu, N.K. Effect of induced defects on the properties of ZnO nanocrystals: Surfactant role and spectroscopic analysis. SN Appl. Sci. 2019, 1, 1030. [Google Scholar] [CrossRef]
- Petris, A.; Vasiliu, I.C.; Gheorghe, P.; Iordache, A.M.; Ionel, L.; Rusen, L.; Iordache, S.; Elisa, M.; Trusca, R.; Ulieru, D.; et al. Graphene Oxide-Based Silico-Phosphate Composite Films for Optical Limiting of Ultrashort Near-Infrared Laser Pulses. Nanomaterials 2020, 10, 1638. [Google Scholar] [CrossRef] [PubMed]
- Hidayah, N.M.S.; Liu, W.-W.; Lai, C.-W.; Noriman, N.Z.; Khe, C.-S.; Hashim, U.; Lee, H.C. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization. AIP Conf. Proc. 2017, 1892, 150002. [Google Scholar] [CrossRef]
- Vasiliu, I.; Gartner, M.; Anastasescu, M.; Todan, L.; Predoana, L.; Elisa, M.; Grigorescu, C.; Negrila, C.; Logofatu, C.; Enculescu, M.; et al. SiO x -P2O5 films—Promising components in photonic structure. Opt. Quantum Electron. 2007, 39, 511–521. [Google Scholar] [CrossRef]
- Elisa, M.; Iordache, S.-M.; Iordache, A.-M.; Vasiliu, I.; Grigorescu, C.; Sava, B.; Boroica, L.; Filip, A.; Dinca, M.; Bartha, C.; et al. Peculiarities of the structural and optical properties of Eu3+, Dy3+, Er3+ and Yb3+-Er3+-doped phosphate glasses. J. Non-Cryst. Solids 2021, 556, 120569. [Google Scholar] [CrossRef]
- Vanitha, M.; Joni, I.M.; Camellia, P.; Balasubramanian, N. Tailoring the properties of cerium doped zinc oxide/reduced graphene oxide composite: Characterization, photoluminescence study, antibacterial activity. Ceram. Int. 2018, 44, 19725–19734. [Google Scholar] [CrossRef]
- Meng, A.; Shao, J.; Fan, X.; Wang, J.; Li, Z. Rapid synthesis of a flower-like ZnO/rGO/Ag micro/nano-composite with enhanced photocatalytic performance by a one-step microwave method. RSC Adv. 2014, 4, 60300–60305. [Google Scholar] [CrossRef]
- Kavitha, M.K.; John, H.; Gopinath, P.; Philip, R. Synthesis of reduced graphene oxide–ZnO hybrid with enhanced optical limiting properties. J. Mater. Chem. C 2013, 1, 3669–3676. [Google Scholar] [CrossRef]
- Kumar, S.S.; Rao, V.R.; Rao, G.N. Effect of morphology, crystallite size and optical band gap on photocatalytic activity of ZnO nanostructures for decolorization of R6G. Mater. Today Proc. 2022, 62, 5494–5502. [Google Scholar] [CrossRef]
- Khan, M.M.; Kumar, S.; Ahamed, M.; Al Dwayyan, A. Microstructure and blueshift in optical band gap of nanocrystalline AlxZn1−xO thin films. J. Lumin- 2014, 155, 275–281. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Edvinsson, T. Absorption and Fluorescence Spectroscopy of Growing ZnO Quantum Dots: Size and Band Gap Correlation and Evidence of Mobile Trap States. Inorg. Chem. 2011, 50, 9578–9586. [Google Scholar] [CrossRef] [PubMed]
- Polydorou, E.; Zeniou, A.; Tsikritzis, D.; Soultati, A.; Sakellis, I.; Gardelis, S.; Papadopoulos, T.A.; Briscoe, J.; Palilis, L.C.; Kennou, S.; et al. Surface passivation effect by fluorine plasma treatment on ZnO for efficiency and lifetime improvement of inverted polymer solar cells. J. Mater. Chem. A 2016, 4, 11844–11858. [Google Scholar] [CrossRef]
- Li, L.; Yao, C.; Wu, L.; Jiang, K.; Hu, Z.; Xu, N.; Sun, J.; Wu, J. ZnS Covering of ZnO Nanorods for Enhancing UV Emission from ZnO. J. Phys. Chem. C 2021, 125, 13732–13740. [Google Scholar] [CrossRef]
- Lee, M.-K.; Tu, H.-F. Enhancement of Ultraviolet and Visible Emissions of ZnO with Zn by Thermal Treatment. Jpn. J. Appl. Phys. 2008, 47, 980–982. [Google Scholar] [CrossRef]
- Zhao, J.-H.; Liu, C.-J.; Lv, Z.-H. Photoluminescence of ZnO nanoparticles and nanorods. Optik 2016, 127, 1421–1423. [Google Scholar] [CrossRef]
- Chelouche, A.; Touam, T.; Tazerout, M.; Boudjouan, F.; Djouadi, D.; Doghmane, A. Low cerium doping investigation on structural and photoluminescence properties of sol-gel ZnO thin films. J. Lumin. 2017, 181, 448–454. [Google Scholar] [CrossRef]
- Nowak, E.; Szybowicz, M.; Stachowiak, A.; Koczorowski, W.; Schulz, D.; Paprocki, K.; Fabisiak, K.; Los, S. A comprehensive study of structural and optical properties of ZnO bulk crystals and polycrystalline films grown by sol-gel method. Appl. Phys. A 2020, 126, 552. [Google Scholar] [CrossRef]
- Tan, S.T.; Sun, X.W.; Yu, Z.G.; Wu, P.; Lo, G.Q.; Kwong, D.L. p-type conduction in unintentional carbon-doped ZnO thin films. Appl. Phys. Lett. 2007, 91, 072101. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Cui, T.; Tong, G.; Wu, W. Enhanced photocatalytic properties of ZnO/reduced graphene oxide sheets (rGO) composites with controllable morphology and composition. Appl. Surf. Sci. 2017, 412, 58–68. [Google Scholar] [CrossRef]
- Lo, S.-S.; Huang, D. Morphological Variation and Raman Spectroscopy of ZnO Hollow Microspheres Prepared by a Chemical Colloidal Process. Langmuir 2010, 26, 6762–6766. [Google Scholar] [CrossRef] [PubMed]
Sample Denomination | ZnO/P2O5 % Molar Ratio | rGO wt.% as Respect to ZnO in Precursor Solution | Number of Layers |
---|---|---|---|
ZnO | 100/0 | 1, 10, 20 | |
ZnOrGO | 100/0 | 1 | 1, 10, 20 |
80ZnO20P2O5rGO | 80/20 | 1 | 1, 10, 20 |
86ZnO14P2O5rGO | 86/14 | 1 | 1, 10, 20 |
90ZnO10P2O5rGO | 90/10 | 1 | 1, 10, 20 |
Band Assignments | Glass | ZnO | ZnOrGO | 90ZnO10P2O5 rGO | 86ZnO14P2O5 rGO | 80ZnO20P2O5 rGO |
---|---|---|---|---|---|---|
FTIR Peaks (cm−1) | ||||||
Zn–O stretching mode [26] | - | 546 | 546 | 546 | 546 | 546 |
υs (Si–O–Si) [27] | 766 | 755 | 754 | 752 | 752 | 752 |
υs (Si-O-) [27] | 906 | 901 988 | 896 | 898 | 898 | 895 |
(980–1050 cm−1) υs Si-O-P [29,30] (1050 cm−1) C-O-C stretching (epoxy group) [28] | - | - | 1010 | 1008 | 1009 | 1011 |
Sample | Average Resistance (GΩ) | w (mm) | Average l (mm) | Resistivity (Ωm) |
---|---|---|---|---|
ZnO | 2.1 (1) | 2.6 (1) | 1.3 (1) | 820 (10) |
ZnOrGO | 0.78 (5) | 3.2 (1) | 0.7 (1) | 700 (10) |
90ZnO10P2O5rGO | 0.11 (2) | 3.2 (1) | 0.6 (1) | 110 (10) |
80ZnO20P2O5rGO | 0.12 (2) | 3.5 (1) | 0.8 (1) | 120 (10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliu, I.C.; Filip, A.V.; Chilibon, I.; Elisa, M.; Bartha, C.; Kuncser, V.; Leca, A.; Boroica, L.; Sava, B.A.; Trusca, R.; et al. Effect of P2O5 Content on Luminescence of Reduced Graphene-Oxide-Doped ZnO–P2O5 Nano-Structured Films Prepared via the Sol–Gel Method. Materials 2023, 16, 6156. https://doi.org/10.3390/ma16186156
Vasiliu IC, Filip AV, Chilibon I, Elisa M, Bartha C, Kuncser V, Leca A, Boroica L, Sava BA, Trusca R, et al. Effect of P2O5 Content on Luminescence of Reduced Graphene-Oxide-Doped ZnO–P2O5 Nano-Structured Films Prepared via the Sol–Gel Method. Materials. 2023; 16(18):6156. https://doi.org/10.3390/ma16186156
Chicago/Turabian StyleVasiliu, Ileana Cristina, Ana Violeta Filip, Irinela Chilibon, Mihail Elisa, Cristina Bartha, Victor Kuncser, Aurel Leca, Lucica Boroica, Bogdan Alexandru Sava, Roxana Trusca, and et al. 2023. "Effect of P2O5 Content on Luminescence of Reduced Graphene-Oxide-Doped ZnO–P2O5 Nano-Structured Films Prepared via the Sol–Gel Method" Materials 16, no. 18: 6156. https://doi.org/10.3390/ma16186156
APA StyleVasiliu, I. C., Filip, A. V., Chilibon, I., Elisa, M., Bartha, C., Kuncser, V., Leca, A., Boroica, L., Sava, B. A., Trusca, R., Eftimie, M., & Nicoara, A. (2023). Effect of P2O5 Content on Luminescence of Reduced Graphene-Oxide-Doped ZnO–P2O5 Nano-Structured Films Prepared via the Sol–Gel Method. Materials, 16(18), 6156. https://doi.org/10.3390/ma16186156