Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties
Abstract
:1. Introduction
2. Structure and Physical Properties of DND Colloids
2.1. Structure of DND Colloidal Solutions
2.2. Physical Properties of DND Colloidal Solutions: Static
2.3. Physical Properties of DND Colloidal Solutions: Dynamic
3. Chemical Properties of DND Colloids
4. Biological Properties of DND Colloids
5. Conclusions
Supplementary Materials
Funding
Conflicts of Interest
References
- Greiner, N.R.; Phillips, D.S.; Johnson, J.D.; Volk, F. Diamonds in detonation soot. Nature 1988, 333, 440–442. [Google Scholar] [CrossRef]
- Lyamkin, A.I.; Petrov, E.A.; Ershov, A.P.; Sakovitch, G.V.; Staver, A.M.; Titov, V.M. Synthesis of diamond from explosives. Sov. Phys. Dokl. 1988, 333, 705–711. [Google Scholar]
- Dolmatov, V.Y.; Ozerin, A.N.; Kulakova, I.I.; Bochechka, O.O.; Lapchuk, N.M.; Myllymäki, V.; Vehanen, A. Detonation nanodiamonds: New aspects in the theory and practice of synthesis, properties and applications. Russ. Chem. Rev. 2020, 89, 1428–1462. [Google Scholar] [CrossRef]
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nature Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Shenderova, O.A.; McGuire, G.E. Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases 2015, 10, 030802. [Google Scholar] [CrossRef]
- Gibson, N.; Shenderova, O.; Luo, T.J.M.; Moseenkov, S.; Bondar, V.; Puzyr, A.; Purtov, K.; Fitzgerald, Z.; Brenner, D.W. Colloidal stability of modified nanodiamond particles. Diam. Relat. Mater. 2009, 18, 620–626. [Google Scholar] [CrossRef]
- Williams, O.A.; Hees, J.; Dieker, C.; Jäger, W.; Kirste, L.; Nebel, C.E. Size-dependent reactivity of diamond nanoparticles. ACS Nano 2010, 8, 4824–4830. [Google Scholar] [CrossRef]
- Krüger, A.; Kataoka, F.; Ozawa, M.; Fujino, T.; Suzuki, Y.; Aleksenskii, A.E.; Vul, A.Y.; Ōsawa, E. Unusually tight aggregation in detonation nanodiamond: Identification and disintegration. Carbon 2005, 43, 1722–1730. [Google Scholar] [CrossRef]
- Vervald, A.M.; Burikov, S.A.; Shenderova, O.A.; Nunn, N.; Podkopaev, D.O.; VlasovI, L.I.; Dolenko, T.A. Relationship between fluorescent and vibronic properties of detonation nanodiamonds and strength of hydrogen bonds in suspensions. J. Phys. Chem. C 2016, 120, 19375–19383. [Google Scholar]
- Kulvelis, Y.V.; Shvidchenko, A.V.; Aleksenskii, A.E.; Yudina, E.B.; Lebedev, V.T.; Shestakov, M.S.; Dideikin, A.T.; Khozyaeva, L.O.; Kuklin, A.I.; Töröke, G.Y.; et al. Stabilization of detonation nanodiamonds hydrosol in physiological media. Diam. Relat. Mater. 2018, 87, 78–89. [Google Scholar] [CrossRef]
- Petit, T.; Yuzawa, H.; Nagasaka, R.; Yamanoi, M.; Osawa, E.; Kosugi, N.; Aziz, E.F. Probing interfacial water on nanodiamonds in colloidal dispersion. J. Phys. Chem. Lett. 2015, 6, A2909–A2912. [Google Scholar] [CrossRef]
- Ozawa, M.; Inaguma, M.; Takahashi, M.; Kataoka, F.; Krüger, A.; Ōsawa, E. Preparation and behavior of brownish, clear nanodiamond colloids. Adv. Mater. 2007, 19, 1201–1206. [Google Scholar] [CrossRef]
- Korobov, M.V.; Batuk, M.M.; Avramenko, N.V.; Ivanova, N.I.; Rozhkova, N.N.; Ōsawa, E. Aggregate structure of “single-nano buckydiamond” in gel and dried powder by differential scanning calorimetry and nitrogen adsorption. Diam. Relat. Mater. 2010, 19, 665–671. [Google Scholar] [CrossRef]
- Shvidchenko, A.V.; Eidelman, E.D.; Vul’, A.Y.; Kuznetsov, N.M.; Stolyarova, D.Y.; Belousov, S.I.; Chvalun, S.N. Colloids of detonation nanodiamond particles for advanced applications. Adv. Colloid Inter. Sci. 2019, 268, 64–68. [Google Scholar] [CrossRef]
- Kulakova, I.I. Surface chemistry of nanodiamonds. Phys. Solid State 2004, 46, 636–643. [Google Scholar] [CrossRef]
- Fang, X.W.; Mao, J.D.; Levin, E.M.; Schmidt-Rohr, K. Nonaromatic core-sell structure of nanodiamond from solid-state NMR spectroscopy. J. Am. Chem. Soc. 2009, 131, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Tinwala, H.; Wairkar, S. Production, surface modification and biomedical applications of nanodiamonds: A sparkling tool for teranostics. Mater. Sci. Eng. C 2019, 97, 913–931. [Google Scholar] [CrossRef]
- Zhang, Y.; Rhee, K.Y.; Hui, D.; Park, S.-J. A critical review of nanonodiamond-based nanocomposites: Synthesis, properties and applications. Compos. Part B 2018, 143, 19–27. [Google Scholar] [CrossRef]
- Levita, G.; Kajita, S.; Righi, M.C. Water adsorption on diamond (111) surfaces: An ab initio study. Carbon 2018, 127, 533–540. [Google Scholar] [CrossRef]
- Dideikin, A.T.; Aleksenskii, A.E.; Baidakova, M.V.; Brunkov, P.; Brzhezinskaya, M.; Davydov, V.; Levitskii, V.; Kidalov, S.; Kukushkina, Y.A.; Kirilenko, D.; et al. Rehybridization of carbon on facets of detonation diamond nanocrystals and forming hydrosols of individual parti les. Carbon 2017, 122, 737–745. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Poyarkov, K.B.; Gavrilkin, S.M.; Lesnikov, E.V.; Schlegel, V.R. Orientation of water molecules by the diamond surface. Rus. J. Phys. Chem. 2011, 85, 712–715. [Google Scholar] [CrossRef]
- Barnard, A.S. Self-assembly in nanodiamond agglutinates. J. Mater. Chem. 2008, 18, 4038–4041. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Gavrilkin, S.M.; Batsanov, A.S.; Poyarkov, K.B.; Kulakova, I.I.; Johnson, D.W.; Mendis, B.G. Giant dielectric permittivity of detonation-produced nanodiamond is caused by water. J. Mater. Chem. 2012, 22, 11166–11172. [Google Scholar] [CrossRef]
- Piña-Salazar, E.-Z.; Sakai, T.; Ōsawa, E.; Futamura, R.; Kaneko, K. Unusual hygroscopic nature of nanodiamonds in comparison with well-known porous materials. J. Colloid Interface Sci. 2019, 549, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Akhvlediani, R.; Michaelson, S.; Hoffman, A. Interaction of water molecules with bare and deuterated polycrystalline diamond surface studied by high resolution electron energy loss and X-ray photoelectron spectroscopies. Surf. Sci. 2010, 604, 2129–2138. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Lesnikov, E.V.; Dan’kin, D.A.; Balakhanov, D.M. Water shells of diamond nanoparticles in colloidal solutions. Appl. Phys. Lett. 2014, 104, 133105. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Dan’kin, D.A.; Gavrilkin, S.M.; Druzhinina, A.I.; Batsanov, A.S. Structural changes in colloid solutions of nanodiamond. New J. Chem. 2020, 44, 1640–1647. [Google Scholar] [CrossRef]
- Hammons, J.A.; Nielsen, M.H.; Bagge-Hansen, M.; Bastea, S.; May, C.; Shaw, W.L.; Martin, A.; Li, Y.; Sinclair, N.; Lauderbach, L.M.; et al. Submicrosecond aggregation during detonation synthesis of nanodiamond. J. Phys. Chem. Lett. 2021, 12, 5286–5293. [Google Scholar] [CrossRef]
- Tomchuk, O.V.; Mchedlov-Petrossyan, N.O.; Kyzyma, O.A.; Kriklya, N.N.; Bulavin, L.A.; Zabulonov, Y.L.; Ivankov, O.I.; Garamus, V.M.; Ōsawa, E.; Avdeev, M.V. Cluster-cluster interaction in nanodiamond hydrosols by small-angle scattering. J. Mol. Liquids 2022, 354, 118816. [Google Scholar] [CrossRef]
- Krueger, A.; Boedeker, T. Deagglomeration and functionalisation of detonation nanodiamond with long alkyl chains. Diam. Relat. Mater. 2008, 17, 1367–1370. [Google Scholar] [CrossRef]
- Kumea, A.; Mochalin, V.N. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond. Diam. Relat. Mater. 2020, 103, 107705. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Poyarkov, K.B.; Gavrilkin, S.M. Orientational polarization of molecular liquids in contact with diamond crystals. JETP Lett. 2008, 88, 595–596. [Google Scholar] [CrossRef]
- Fernández, D.P.; Mulev, Y.; Goodwin, A.R.H.; Levelt Sengers, J.M.H. A database for the static dielectric constant of water and steam. J. Phys. Chem. Ref. Data 1995, 24, 33–69. [Google Scholar] [CrossRef]
- Ellison, W.J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0–25 THz and the temperature range 0–100 °C. J. Phys. Chem. Ref. Data 2007, 36, 1–18. [Google Scholar] [CrossRef]
- Prodan, C.; Bot, C. Correcting the polarization effect in very low frequency dielectric spectroscopy. J. Phys. D Appl. Phys. 2009, 42, 175505. [Google Scholar] [CrossRef]
- Chew, W.C.; Sen, P.N. Dielectric enhancement due to electrochemical double layer: Thin double layer approximation. J. Chem. Phys. 1982, 77, 4683–4693. [Google Scholar] [CrossRef]
- Blum, G.; Maier, H.; Sauer, F.; Schwan, H.P. Dielectric relaxation of colloidal particle suspensions at radio frequencies caused by surface conductance. J. Phys. Chem. 1995, 99, 780–789. [Google Scholar] [CrossRef]
- Chelidze, T.L.; Gueguen, Y.; Ruffet, C. Electrical spectroscopy of porous rocks: A review-II. Experimental results and interpretation. Geophys. J. Int. 1999, 137, 16–34. [Google Scholar] [CrossRef]
- Chakrapani, V.; Angus, J.C.; Anderson, A.B.; Wolter, S.D.; Stoner, B.R.; Sumanasekera, G.U. Charge transfer equilibrium between diamond and an aqueous oxygen electrochemical redox couple. Science 2007, 318, 1424–1430. [Google Scholar] [CrossRef]
- Mimouni, Z.; Chehouani, H. Low-frequency dielectric relaxation of large colloidal particles in suspension. Colloid J. 2007, 69, 765–768. [Google Scholar] [CrossRef]
- Gomaa, M.M. Relation between electric properties and water saturation for hematitic sandstone with frequency. Ann. Geophys. 2009, 51, 801–811. [Google Scholar]
- Cametti, C.; De Luca, F.; Parmentier, A. Radiowave dielectric investigation of water confined in channels of carbon nanotubes. J. Chem. Phys. 2012, 137, 094908. [Google Scholar] [CrossRef]
- Renou, R.; Szymczyk, A.; Maurin, G.; Malfreyt, P.; Ghoufi, A. Superpermittivity of nanoconfined water. J. Chem. Phys. 2015, 142, 184706. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Gavrilkin, S.M.; Korzhenevskiy, A.P.; Antipenko, A.G.; Shatalova, T.B.; Batsanov, A.S. Giant permittivity of confined water on nanodiamonds. J. Phys. Chem. C 2022, 126, 6385–6393. [Google Scholar] [CrossRef]
- Mogi, K. Earthquake Prediction; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.; Academic Press: New York, NY, USA, 2011. [Google Scholar]
- Zheng, J.; Chin, W.-C.; Khijniak, E.; Khijniak, E., Jr.; Pollack, G.H. Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Adv. Colloid Interface Sci. 2006, 127, 19. [Google Scholar] [CrossRef] [PubMed]
- Florea, D.; Musa, S.; Huyghe, J.M.R.; Wyss, H. Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proc. Natl. Acad. Sci. USA 2014, 111, 6554. [Google Scholar] [CrossRef] [PubMed]
- Demangeat, J.-L. Water proton NMR relaxation revisited: Ultrahighly diluted aqueous solutions beyond Avogadro’s limit prepared by iterative centesimal dilution under shaking cannot be considered as pure solvent. J. Mol. Liquid 2022, 360, 119500. [Google Scholar] [CrossRef]
- Mchedlov-Petrossyan, N.O.; Kamneva, N.N.; Marynin, A.I.; Kryshtal, A.P.; Ōsawa, E. Colloidal properties and behaviors of 3 nm primary particles of detonation nanodiamonds in aqueous media. Phys. Chem. Chem. Phys. 2015, 17, 16186–16203. [Google Scholar] [CrossRef] [PubMed]
- Denisov, S.A.; Sokolina, G.A.; Bogatyreva, G.P.; Grankina, T.Y.; Krasil’nikova, O.K.; Plotnikova, E.V.; Spitsyn, B.V. Adsorption and electrical properties of nanodiamond powders in the presence of water vapor. Prot. Met. Phys. Chem. Surf. 2013, 49, 286–291. [Google Scholar] [CrossRef]
- Piña-Salazar, E.-Z.; Sagisaka, K.; Hattori, Y.; Sakai, T.; Futamura, R.; Ōsawa, E.; Kanek, K. Electrical conductivity changes of water-adsorbed nanodiamonds with thermal treatment. Chem. Phys. Lett. 2019, 737, 100018. [Google Scholar] [CrossRef]
- Artemov, V.G.; Uykur, E.; Kapralov, P.O.; Kiselev, A.; Stevenson, K.; Ouerdane, H.; Dressel, M. Anomalously high proton conduction of interfacial water. J. Phys. Chem. Lett. 2020, 11, 3623–3628. [Google Scholar] [CrossRef] [PubMed]
- Teschke, O.; Ceotto, G.; de Souza, E.F. Interfacial aqueous solutions dielectric constant measurements using atomic force microscopy. Chem. Phys. Lett. 2000, 326, 328–334. [Google Scholar] [CrossRef]
- Teschke, O.; Soares, D.M.; Valente Filho, J.F.; de Souza, E.F. Atomic scale patterns formed during surface scanning by atomic force microscopy tips. Appl. Phys. Lett. 2006, 89, 253125. [Google Scholar] [CrossRef]
- Fumagalli, L.; Esteban-Ferrer, D.; Cuervo, A.; Carrascosa, J.L.; Gomila, G. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces. Nat. Mater. 2012, 11, 808–816. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.; et al. Anomalously low dielectric constant of confined water. Science 2018, 360, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Bonthuis, D.J.; Gekle, S.; Netz, R.R. Profile of the static permittivity tensor of water at interfaces: Consequences for capacitance, hydration interaction and ion adsorption. Langmuir 2012, 28, 7679–7694. [Google Scholar] [CrossRef] [PubMed]
- Parez, S.; Predota, M.; Machesky, M. Dielectric properties of water at rutile and graphite surfaces: Effect of molecular structure. J. Phys. Chem. C 2014, 118, 4818–4834. [Google Scholar] [CrossRef]
- Itoh, H.; Sakuma, H. Dielectric constant of water as a function of separation in a slab geometry: A molecular dynamics study. J. Chem. Phys. 2015, 142, 184703. [Google Scholar] [CrossRef]
- Qi, W.; Zhao, H. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis. J. Chem. Phys. 2015, 143, 114708. [Google Scholar] [CrossRef]
- De Luca, S.; Kannam, S.K.; Todd, B.D.; Frascoli, F.; Hansen, J.S.; Daivis, P.J. Effects of confinement on the dielectric response of water extends up to mesoscale dimensions. Langmuir 2016, 32, 4765–4773. [Google Scholar] [CrossRef]
- Schlaich, A.; Knapp, E.W.; Netz, R.R. Water dielectric effects in planar confinement. Phys. Rev. Lett. 2016, 117, 048001. [Google Scholar] [CrossRef] [PubMed]
- Meneses-Juarez, E.; Rivas-Silva, J.F.; Gonzalez-Melchor, M. Static dielectric constant of water within a bilayer using recent water models: A molecular dynamics study. J. Phys. Cond. Matter 2018, 30, 195001. [Google Scholar] [CrossRef] [PubMed]
- Varghese, S.; Kannam, S.K.; Hansen, J.S.; Sathian, S.P. Effect of hydrogen bonds on the dielectric properties of interfacial water. Langmuir 2019, 35, 8159–8166. [Google Scholar] [CrossRef] [PubMed]
- Loche, P.; Ayaz, C.; Schlaich, A.; Uematsu, Y.; Netz, R.R. Giant axial dielectric response in water-filled nanotubes and effective electrostatic ion-ion interactions from a tensorial dielectric model. J. Phys. Chem. B 2019, 123, 10850–10857. [Google Scholar] [CrossRef] [PubMed]
- Kayal, A.; Chandra, A. Water in confinement between nanowalls: Results for hexagonal boron nitride versus graphene sheets from ab initio molecular dynamics. J. Phys. Chem. C 2019, 123, 6130–6140. [Google Scholar] [CrossRef]
- Loche, P.; Ayaz, C.; Wolde-Kidan, A.; Schlaich, A.; Netz, R.R. Universal and nonuniversal aspects of electrostatics in aqueous nanoconfinement. J. Phys. Chem. B 2020, 124, 4365–4371. [Google Scholar] [CrossRef] [PubMed]
- Jalali, H.; Ghorbanfekr, H.; Hamid, I.; Neek-Amal, M.; Rashidi, R.; Peeters, F.M. Out-of-plane permittivity of confined water. Phys. Rev. E 2020, 102, 022803. [Google Scholar] [CrossRef]
- Esquivel-Sirvent, R. Anomaly of the dielectric function of water under confinement and its role in van der Waals interactions. Phys. Rev. E 2020, 102, 042609. [Google Scholar] [CrossRef]
- Motevaselian, M.H.; Aluru, N.R. Confinement-induced enhancement of parallel dielectric permittivity: Super permittivity under extreme confinement. J. Phys. Chem. Lett. 2020, 11, 10532–10537. [Google Scholar] [CrossRef]
- Ruiz-Barragan, S.; Muñoz-Santiburcio, D.; Körning, S.; Marx, D. Quantifying anisotropic dielectric response properties of nanoconfined water within graphene slit pores. Phys. Chem. Chem. Phys. 2020, 22, 10833–10837. [Google Scholar] [CrossRef]
- Cerveny, F.; Mallamace, J.; Swenson, M.; Vogel, M.; Xu, L. Confined water as model of supercooled water. Chem. Rev. 2016, 116, 7608–7625. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, H. Ordered structures in liquid water: Is cold water a genuine liquid? J. Raman Spectr. 2022, 53, 1656–1665. [Google Scholar] [CrossRef]
- Yang, C.C.; Mai, Y.-W. Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials. Mater. Sci. Engin. R. 2014, 79, 1–40. [Google Scholar] [CrossRef]
- Qi, W. Nanoscopic thermodynamics. Acc. Chem. Res. 2016, 49, 1587–1595. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Dan’kin, D.A. Size effect in cohesive energy of elements. Mater. Chem. Phys. 2017, 196, 245–248. [Google Scholar]
- Shandiz, M.A.; Safaei, A.; Sanjabi, S.; Barber, Z.H. Modeling the cohesive energy and melting point of nanoparticles by their average coordination number. Solid State Commun. 2008, 145, 432–437. [Google Scholar] [CrossRef]
- Taylor, C.D.; Neurock, M.; Scully, J.R. First-principles investigation of the fundamental corrosion properties of a model Cu38 nanoparticle and the (111), (113) surfaces. J. Electrochem. Soc. 2008, 155, C407–C414. [Google Scholar] [CrossRef]
- Tang, L.; Han, B.; Persson, K.; Friesen, C.; He, T.; Sieradzki, K.; Ceder, G. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 2010, 132, 596–600. [Google Scholar] [CrossRef]
- Tang, L.; Li, X.; Cammarata, R.C.; Friesen, C.; Sieradzki, K. Electrochemical stability of elemental metal nanoparticles. J. Am. Chem. Soc. 2010, 132, 11722–11726. [Google Scholar] [CrossRef]
- Bradac, C.; Osswald, S. Effect of structure and composition of nanodiamond powders on thermal stability and oxidation kinetics. Carbon 2018, 132, 616–622. [Google Scholar] [CrossRef]
- Batsanov, S.S. Diamond structure cannot be stable in nm-sized particles. Acta Cryst. B 2014, 70, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Batsanov, S.S.; Guriev, D.L.; Gavrilkin, S.M.; Hamilton, K.A.; Lindsey, K.; Mendis, B.G.; Riggs, H.J.; Batsanov, A.S. On the nature of fibres grown from nanodiamond colloids. Mater. Chem. Phys. 2016, 173, 325–332. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Gavrilkin, S.M.; Shatalova, T.B.; Mendis, B.G.; Batsanov, A.S. Fixation of atmospheric nitrogen by nanodiamonds. New J. Chem. 2018, 42, 11160–11164. [Google Scholar] [CrossRef]
- Kurakov, A.V.; Batsanov, A.S.; Gavrilkin, S.M.; Batsanov, S.S. Nitrogen fixation and biological behavior of nanodiamond colloidal solutions. ChemPlusChem 2020, 85, 1905–1911. [Google Scholar] [CrossRef]
- Zhu, D.; Zhang, L.; Ruther, R.E.; Hamers, R. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nature Mater. 2013, 12, 836–841. [Google Scholar] [CrossRef]
- Hoffman, B.M.; Lukoyanov, Z.; Yang, D.-Y.; Dean, D.R.; Seefeldt, L.C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041–4062. [Google Scholar] [CrossRef]
- Tie, X.X.; Zhang, R.Y.; Brasseur, G.; Emmons, L.; Lei, W.F. Effects of lightning on reactive nitrogen and nitrogen reservoir. species in the troposphere. J. Geophys. Res. 2001, 106, 3167–3178. [Google Scholar] [CrossRef]
- Yang, J.; Bai, H.; Guo, Y.; Zhang, H.; Jiang, R.; Yang, B.; Wang, J.; Yu, J.C. Photodriven disproportionation of nitrogen and its change to reductive nitrogen photofixation. Angew. Chem. Int. Ed. 2021, 60, 927–936. [Google Scholar] [CrossRef]
- Cullis, C.F.; Yates, J.G. Reaction of carbon with nitrogen. Trans. Faraday Soc. 1964, 60, 141–148. [Google Scholar] [CrossRef]
- Yakumovych, A.; Kaptay, G.; Flandorfer, H.; Bernardi, J.; Schwarz, S.; Ipser, H. The nano heat effect of replacing macro-particles by nano-particles in drop calorimetry: The case of core/shell metal/oxide. RSC Adv. 2018, 8, 8856–8869. [Google Scholar] [CrossRef]
- Mironova, E.Y.; Ermilova, M.M.; Efimov, M.N.; Zemtsov, L.M.; Orekhova, N.V.; Karpacheva, G.P.; Bondarenko, G.N.; Zhilyaeva, N.A.; Muraviev, D.N.; Yaroslavtsev, A.B. Detonation nanodiamonds as catalysts of steam reforming of ethanol. Russ. Chem. Bull. 2013, 62, 2317–2321. [Google Scholar] [CrossRef]
- Varley, T.S.; Hirani, M.; Harrison, G.; Holt, K.B. Nanodiamond surface redox chemistry: Influence of physicochemical properties on catalytic processes. Faraday Discuss. 2014, 172, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Batsanov, S.S.; Gavrilkin, S.M.; Dan’kin, D.A.; Shatalova, T.B.; Batsanov, A.S. Nanodiamond fixes molecular nitrogen and generates NH4NO3. Diamond. Relat. Mater. 2023, in press. [Google Scholar]
- Hosono, H. Spiers Memorial Lecture: Catalytic activation of molecular nitrogen for green ammonia synthesis: Introduction and current status. Faraday Discuss. 2023, 243, 9–26. [Google Scholar] [CrossRef] [PubMed]
- Krueger, A. New carbon materials: Biological applications of functionalized nanodiamond materials. Chem. Eur. J. 2008, 14, 1382–1390. [Google Scholar] [CrossRef]
- Shugalei, I.V.; Voznyakovskii, A.P.; Garabadzhiu, A.V.; Tselinskii, I.V.; Sudarikov, A.M.; Ilyushin, M.A. Biological activity of detonation nanodiamond and prospects in its medical and biological applications. Russ. J. General Chem. 2013, 83, 851–883. [Google Scholar] [CrossRef]
- Al-Jumaili, A.; Alancherry, S.; Bazaka, K.; Jacob, M.V. Review on the antimicrobial properties of carbon nanostructures. Materials 2017, 10, 1066. [Google Scholar] [CrossRef]
- Garcia-Bennett, A.E.; Everest-Dass, A.; Moroni, I.; Rastogi, I.D.; Parker, L.M.; Packer, N.H.; Brown, L.J. Influence of surface chemistry on the formation of a protein corona on nanodiamonds. J. Mater. Chem. B 2019, 7, 3383–3389. [Google Scholar] [CrossRef]
- Salman, A.; Tsror, L.; Pomerantz, A.; Moreh, R.; Mordechai, S.; Huleihel, M. FTIR spectroscopy for detection and identification of fungal phytopathogenes. Spectroscopy 2010, 24, 261–267. [Google Scholar] [CrossRef]
- McGill, W.B.; Hunt, H.W.; Woodmansee, R.G.; Reuss, J.O. Phoenix, a model of the dynamics of carbon and nitrogen in grassland soils. Ecol. Bull. 1981, 33, 49–115. [Google Scholar]
- Ross, S. Soil Processes. A Systematic Approach; Rouledge: London, UK; Chapman and Hall Inc.: New York, NY, USA, 1989; p. 444. [Google Scholar]
- Wainwright, M. Metabolic diversity of fungi in relation to growth and mineral cycling in soil—A review. Trans. Br. Mycol. Soc. 1988, 90, 159–170. [Google Scholar] [CrossRef]
- Kurakov, A.V.; Lavrent’ev, R.B.; Nechitailo, T.Y.; Golyshin, P.N.; Zvyagintsev, D.G. Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Microbiology 2008, 77, 90–98. [Google Scholar] [CrossRef]
- Bernal, J.D. The physical basis of life. Proc. R Soc. Biol. Sci. A 1949, 362, 537–558. [Google Scholar]
- Szent-Györgyi, A. Bioenergetics; Academic Press: New York, NY, USA, 1957. [Google Scholar]
- Szent-Györgyi, A. Biology and pathology of water. Perspect. Biol. Med. 1971, 14, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Ling, G.N. Search of the Physical Basis of Life; Plenum: New York, NY, USA, 1984. [Google Scholar]
- Pollack, G.H. Cells, Gels and The Engines of Life: A New, Unifying Approach to Cell Function; Ebner & Sons: Seattle, WA, USA, 2001. [Google Scholar]
- Sommer, A.P.; Zhu, D.; Fecht, H.-J. Genesis on diamonds. Cryst. Growth Design 2008, 8, 2628–2629. [Google Scholar] [CrossRef]
- Mitra-Delmotte, G.; Mitra, A.N. Field-control, phase-transitions, and life’s emergence. Front. Physiol. 2012, 3, 366. [Google Scholar] [CrossRef]
- Luisi, P.L. The Emergence of Life: From Chemical Origins to Synthetic Biology; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Elani, Y. Interfacing living and synthetic cells as an emerging frontier in synthetic biology. Angew. Chem. Int. Ed. 2021, 60, 5602–5611. [Google Scholar] [CrossRef]
- Saladino, R.; Botta, L.; Di Mauro, E. The prevailing catalytic role of meteorites in formamide prebiotic processes. Life 2018, 8, 6. [Google Scholar] [CrossRef]
- Osinski, G.R.; Cockell, C.S.; Pontefract, A.; Sapers, H.M. The role of meteorite impacts in the origin of life. Astrobiology 2020, 20, 1121–1149. [Google Scholar] [CrossRef]
- Reina, G.; Zhao, L.; Bianco, A.; Komatsu, N. Chemical functionalization of nanodiamonds: Opportunities and challenges ahead. Angew. Chem. Int. Ed. 2019, 58, 17918–17929. [Google Scholar] [CrossRef]
- Bastea, S. Nanocarbon condensation in detonation. Sci. Rep. 2017, 7, 2151. [Google Scholar] [CrossRef] [PubMed]
- Kupershtokh, A.L.; Ershov, A.P.; Medvedev, D.A. Model for the coagulation of carbon clusters at high densities and temperatures. Comb. Expl. Shock. Waves 1998, 34, 460–466. [Google Scholar] [CrossRef]
- Batsanov, S.S. Thermodynamic reason for delamination of molecular mixtures under pressure and detonation synthesis of diamond. Russ. J. Phys. Chem. 2009, 83, 1419–1421. [Google Scholar] [CrossRef]
- Batsanov, S.S.; Osavchuk, A.N.; Naumov, S.P.; Gavrilkin, S.M.; Leskov, A.S.; Mendis, B.G.; Beeby, A.; Batsanov, A.S. Novel synthesis and properties of hydrogen-free detonation nanodiamond. Mater. Chem. Phys. 2018, 216, 120–129. [Google Scholar] [CrossRef]
D, μm | Vp, μm3 | C, vol% | Vw, μm3 | Rw, μm | C, vol% | Vw, μm3 | Rw, μm |
---|---|---|---|---|---|---|---|
0.05 | 5.24 × 10−4 | 0.045 | 1.164 | 1.06 | 0.1164 | 0.488 | |
0.10 | 4.19 × 10−3 | 9.311 | 2.10 | 0.45 | 0.9311 | 0.976 | |
0.20 | 3.35 × 10−2 | 74.44 | 4.21 | 7.444 | 1.95 | ||
0.40 | 2.68 × 10−1 | 595.5 | 8.41 | 59.55 | 3.90 |
Solvent | CCl4 | PhCl | ClCH2CH2Cl | Me2CO |
---|---|---|---|---|
μ of the solvent, in D | 0 | 1.95 | 2.27 | 2.88 |
ε of the solvent (±1%) | 2.24 | 5.70 | 10.4 | 20.7 |
ε of the colloid (±1%) | 2.28 | 6.9 | 23 | 88 |
DND, wt% | 0.000 | 0.017 | 0.023 | 0.034 | 0.057 | 0.170 |
---|---|---|---|---|---|---|
ε, 1 kHz | 78.5 | 4.75 × 103 | 6.47 × 103 | 1.40 × 104 | 4.86 × 104 | 1.41 × 105 |
R, kΩ | 103 | 0.139 | 0.129 | 0.093 | 0.060 | 0.033 |
Dilution Factor | Min. D | Mean D | Max. D |
---|---|---|---|
1 a | 164.2 | 223.8 | 342.0 |
10 | 105.7 | 211.3 | 396.1 |
100 | 105.7 | 245.1 | 531.2 |
1000 | 32.67 | 187.0 | 531.2 |
M | Cu | Au | C | Si | Ge | Mn | Fe | Co | Ni | Pt |
---|---|---|---|---|---|---|---|---|---|---|
Nb | 12 | 12 | 4 | 4 | 4 | 8 | 8 | 12 | 12 | 12 |
Np | 10.52 | 10.33 | 3.63 | 3.44 | 3.41 | 6.86 | 6.96 | 10.28 | 10.55 | 10.40 |
Eb | 337.4 | 368.2 | 716.7 | 450.0 | 372.0 | 659.0 | 415.5 | 426.7 | 430.1 | 565.7 |
Ep | 295.8 | 317.0 | 650.4 | 387.0 | 317.1 | 565.1 | 361.5 | 365.5 | 378.1 | 490.3 |
Samples | Elemental Analysis, % | ρ, g cm−3 | Refractive Index | |||
---|---|---|---|---|---|---|
C | N | H | O | |||
1 | 40.1 | 1.5 | 1.9 | 56.5 | 1.88 | 1.64 |
2 | 55.0 | 2.8 | 3.2 | 39.0 | ||
3 | 67.4 | 2.9 | 3.4 | 26.3 | 1.92 | 1.67 |
4 | 74.1 | 2.4 | 1.8 | 21.7 | 2.28 | 1.78 |
№ | DND | Treatment | C | H | N | O | C/N |
---|---|---|---|---|---|---|---|
0 | powder | 87.1 | 0.5 | 2.2 | 10.2 | 40.7 | |
1 | colloid | Dried at 60 °C, 4 h | 86.0 | 0.3 | 2.2 | 11.6 | 40.0 |
2 | colloid | Air-dried, 1 week | 69.6 | 1.2 | 4.2 | 25.0 | 16.6 |
3 | colloid | Air-dried, 3 weeks | 42.6 | 3.0 | 3.4 | 51.1 | 12.7 |
4 | colloid | Air-bubbled, 24 h | 52.1 | 1.3 | 3.6 | 43.0 | 14.5 |
5 | colloid | N2-Bubbled, 24 h | 51.2 | 1.3 | 4.8 | 42.7 | 10.7 |
6 | colloid | N2-Bubbled, UV, 11 h | 27.2 | 1.8 | 1.3 | 69.6 | 20.8 |
7 | colloid | N2-Bubbled, dark, 11 h | 34.4 | 1.9 | 2.0 | 61.7 | 17.2 |
8 | AS colloid | N2-Bubbled, 2 weeks | 35.0 | 1.5 | 2.4 | 61.1 | 14.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batsanov, S.S.; Gavrilkin, S.M.; Dan’kin, D.A.; Batsanov, A.S.; Kurakov, A.V.; Shatalova, T.B.; Kulikova, I.M. Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties. Materials 2023, 16, 6227. https://doi.org/10.3390/ma16186227
Batsanov SS, Gavrilkin SM, Dan’kin DA, Batsanov AS, Kurakov AV, Shatalova TB, Kulikova IM. Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties. Materials. 2023; 16(18):6227. https://doi.org/10.3390/ma16186227
Chicago/Turabian StyleBatsanov, Stepan S., Sergey M. Gavrilkin, Dmitry A. Dan’kin, Andrei S. Batsanov, Alexander V. Kurakov, Tatiana B. Shatalova, and Inna M. Kulikova. 2023. "Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties" Materials 16, no. 18: 6227. https://doi.org/10.3390/ma16186227
APA StyleBatsanov, S. S., Gavrilkin, S. M., Dan’kin, D. A., Batsanov, A. S., Kurakov, A. V., Shatalova, T. B., & Kulikova, I. M. (2023). Transparent Colloids of Detonation Nanodiamond: Physical, Chemical and Biological Properties. Materials, 16(18), 6227. https://doi.org/10.3390/ma16186227