Removal of Organic Matter from Tunisian Industrial Phosphoric Acid by Adsorption onto Purified Natural Illite/Kaolinite Clay: Kinetics, Isothermal and Thermodynamic Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Clay Purification
2.2.2. Industrial Phosphoric Acid Characterisation
2.2.3. Clay Characterisation
2.2.4. Adsorption Experiments
2.2.5. Kinetics Model
- -
- Pseudo-first-order kinetic model: Its linear equation was defined by Lagergren as follows [35]:
- -
- Pseudo-second-order Kinetic Model: Its linear equation can be expressed as follows [35]:
- -
- Intraparticular Diffusion Model: This model, suggested by Weber, is used to examine the mechanism of the adsorption process. Its linear equation is as follows [35]:
2.2.6. Adsorption Isotherm Models
- -
- Freundlich Model: This empirical approach is frequently employed to describe the adsorption on heterogeneous systems possessing active sites with various affinities. Its expression is given by Equation (7) [36].
- -
- Redlich–Peterson Model: This hybrid model combines the Langmuir and Freundlich isotherms, and may be adopted for either homogeneous or heterogeneous systems. It is expressed as [36]:
- -
2.2.7. Adsorption Thermodynamics
- -
- Thermochemical Parameters
- -
- Activation Energy
3. Results and Discussion
3.1. Industrial Phosphoric Acid Characterisation
3.2. Douiret Clay Characterisation
- -
- Chemical Analysis of Raw Clay: Table 2 presents the results of chemical analysis of the raw clay sample using X-ray fluorescence. As intended, the main constituents of RD are silica (SiO2) and alumina (Al2O3). It can be observed that the iron content is quite high, which is characteristic of Tunisian clays [41]. In contrast, the calcium content is very low, indicating a limited presence of calcite content. This is further validated through a negative hydrochloric acid test.
- -
- Mineralogical Analysis: The X-ray diffraction patterns of raw clay in Figure 2 show that the raw material is mostly made up of illite (I), as identified by reflections at 9.8 Å (2Ɵ = 8.94°); 4.47 Å (2Ɵ = 19.95°); 2.98 Å (2Ɵ = 29.31°) and 2.56 Å (2Ɵ = 34.91°) and kaolinite (K) as indicated by the appearance of reflections at 7.1 Å (2Ɵ = 12.47°); 3.76 Å (2Ɵ = 23.59°) and 3.55 Å (2Ɵ = 25.06°) [41]. The spectrum highlights the presence of a non-swelling phase (impurities) primarily consisting of quartz, characterised by reflections 4.27 Å (2Ɵ = 20.76°); 3.33 Å (2Ɵ = 26.72°); 2.44 Å (2Ɵ = 36.69°) and 2.27 Å (2Ɵ = 39.53°). Finally, a peak reflection at 3.04 Å (2Ɵ = 29.31°) indicates the presence of calcite in trace amounts [42].
- -
- Functional Group Analysis: The existence of a band situated within the 3200–3800 cm−1 range is recorded in the infrared spectrum of the raw material, as depicted in (Figure 4). Peaks at 3621 and 3419 cm−1 are related to the stretching vibrations of the OH groups of the octahedral layer. The first peak corresponds to AlMgOH and/or Al2OH [28]. The second peak is linked to the deformation vibrations of water molecules. The peak centred near 1632 cm−1 is linked to the deformation vibrations of the H2O molecules adsorbed between the sheets. Furthermore, Al-OH bending bands in the 690–705 cm−1 range are a distinctive feature of kaolinite and other di-octahedral clays [28]. The identification of illite clay using infrared techniques has been reported to be quite difficult [43]. Quartz, the most important non-clay mineral, is found at 798 cm−1 [28]. The wide band of 1032 cm−1 is related to the Si-O stretching vibration. The bending bands for Si-O-Al are located at 540–555 cm−1, and for Si-O-Si, they are at 425–480 cm−1.
- -
- BET Specific Surface Area and Porosity Analysis: Figure 5 displays the nitrogen adsorption–desorption isotherms in raw clay determined at 77 K. According to the nomenclature of the IUPAC (International Union of Pure and Applied Chemistry), these isotherms can be classified as type IV, exhibiting a hysteresis cycle denoted as H3. This designation implies a mesoporous clay structure [44].
3.3. Adsorption Study
3.3.1. Effect of Purification on Efficiency of Organic Matter Removal
3.3.2. Effect of Clay Dose and Temperature
3.4. Effect of Contact Time
3.5. Kinetic Results
- -
- Migration of the adsorbate from the bulk liquid phase to the boundary layer of the liquid film, which is bound to the solid particle.
- -
- Transfer of the adsorbate through the liquid layer to the external surface of the adsorbent (external diffusion).
- -
- Diffusion of the adsorbate inside the adsorbent pores (intraparicular diffusion).
- -
- Finally, adsorption of the solute on the active site.
3.6. Adsorption Isotherm Models
3.7. Thermodynamic Parameters and Activated Energy of Adsorption
4. Comparison of Douiret Clay with Bentonite Clays
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grand View Research. Phosphoric Acid Market Size, Grand View Research—Share & Trends Analysis Report; Grand View Research: San Francisco, CA, USA, 2023. [Google Scholar]
- Gilmour, R. Phosphoric acids and phosphates. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Kouzbour, S.; Gourich, B.; Gros, F.; Vial, C.; Allam, F.; Stiriba, Y. Comparative analysis of industrial processes for cadmium removal from phosphoric acid: A review. Hydrometallurgy 2019, 188, 222–247. [Google Scholar]
- Ober, J.A. Mineral Commodity Summaries; US Geological Survey: Reston, VA, USA, 2018. [Google Scholar]
- Chen, M.; Li, Z.; Huang, P.; Li, X.; Qu, J.; Yuan, W.; Zhang, Q. Mechanochemical transformation of apatite to phosphoric slow-release fertilizer and soluble phosphate. Process. Saf. Environ. Prot. 2018, 114, 91–96. [Google Scholar] [CrossRef]
- Becker, P. Phosphates and Phosphoric Acid: Raw Materials, Technology, and Economics of the Wet Process; Marcel Dekker: New York, NY, USA, 1983. [Google Scholar]
- Zhou, Y.; Zheng, G.; Long, Y.; Liu, Z.; Tao, C.; Liu, R. Advanced oxidation processes for wet-process phosphoric acid: Enhanced phosphorus recovery and removal of organic matters. Hydrometallurgy 2022, 210, 105842. [Google Scholar] [CrossRef]
- Taha, M.H.; Abdel Maksoud, S.A.; Ali, M.M.; El Naggar, A.M.; Morshedy, A.S.; Elzoghby, A.A. Conversion of biomass residual to acid-modified bio-chars for efficient adsorption of organic pollutants from industrial phosphoric acid: An experimental, kinetic and thermodynamic study. Int. J. Environ. Anal. Chem. 2019, 99, 1211–1234. [Google Scholar]
- Baturin, G.N.; Kochenov, A.V. Uranium in phosphorites. Lithol. Miner. Resour. 2001, 36, 303–321. [Google Scholar] [CrossRef]
- Theys, T. Influence of the rock impurities on the phosphoric acid process, products and some downstream uses. In Proceedings of the IFA Technical Committee Meeting, Abu Dabi, United Arab Emirates, 9 September–2 October 2003. [Google Scholar]
- El Naggar, A.M.; Ali, M.M.; Abdel Maksoud, S.A.; Taha, M.H.; Morshedy, A.S.; Elzoghby, A.A. Waste generated bio-char supported co-nanoparticles of nickel and cobalt oxides for efficient adsorption of uranium and organic pollutants from industrial phosphoric acid. J. Radioanal. Nucl. Chem. 2019, 320, 741–755. [Google Scholar]
- Fayiga, A.O.; Nwoke, O.C. Phosphate rock: Origin, importance, environmental impacts, and future roles. Environ. Rev. 2016, 24, 403–415. [Google Scholar] [CrossRef]
- Mellah, A.; Benachour, D. Adsorption of Heavy Metals from Industrial Phosphoric Acid by Algerian Activated Bentonite. Model. Ann. Chim. Sci. Mat. 2007, 32, 487–504. [Google Scholar] [CrossRef]
- Dissanayake, C.B.; Chandrajith, R. Introduction to Medical Geology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Koopman, C.; Witkamp, G.J. Ion exchange extraction during continuous recrystallization of CaSO4 in the phosphoric acid production process: Lanthanide extraction efficiency and CaSO4 particle shape. Hydrometallurgy 2002, 63, 137–147. [Google Scholar] [CrossRef]
- Awwad, N.S.; El-Nadi, Y.A.; Hamed, M.M. Successive processes for purification and extraction of phosphoric acid produced by wet process. Chem. Eng. Process. Process Intensif. 2013, 74, 69–74. [Google Scholar] [CrossRef]
- Chang, M.Y.; Juang, R.S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J. Colloid Interface Sci. 2004, 278, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Bendada, A.; Meniai, A.H.; Bencheikh, L.M. Modeling of Phosphoric Acid Purification by Liquid-Liquid Extraction. Chem. Eng. Technol. 2001, 24, 1273–1280. [Google Scholar] [CrossRef]
- Kabay, N.; Demircioğlu, M.; Ekinci, H.; Yüksel, M.; Sağlam, M.; Streat, M. Extraction of Cd (II) and Cu (II) from phosphoric acid solutions by solvent-impregnated resins (SIR) containing cyanex 302. React. Funct. Polym. 1998, 38, 219–226. [Google Scholar] [CrossRef]
- Hannachi, A.; Habaili, D.; Chtara, C.; Ratel, A. Purification of wet process phosphoric acid by solvent extraction with TBP and MIBK mixtures. Sep. Purif. Technol. 2007, 55, 212–216. [Google Scholar] [CrossRef]
- Olyaie, E.; Banejad, H.; Afkhami, A.; Rahmani, A.; Khodaveisi, J. Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Sep. Purif. Technol. 2012, 95, 10–15. [Google Scholar] [CrossRef]
- Taha, M.H.; El-Maadawy, M.M.; Hussein, A.E.M.; Youssef, W.M. Uranium sorption from commercial phosphoric acid using kaolinite and metakaolinite. J. Radioanal. Nucl. Chem. 2018, 317, 685–699. [Google Scholar] [CrossRef]
- Monser, L.; Amor, M.B.; Ksibi, M. Purification of wet phosphoric acid using modified activated carbon. Chem. Eng. Process. Process Intensif. 1999, 38, 267–271. [Google Scholar] [CrossRef]
- Abderrahim, N.; Djellabi, R.; Amor, H.B.; Fellah, I.; Giordana, A.; Cerrato, G.; Bianchi, C.L. Sustainable purification of phosphoric acid contaminated with Cr (VI) by Ag/Ag3PO4 coated activated carbon/montmorillonite under UV and solar light: Materials design and photocatalytic mechanism. J. Environ. Chem. Eng. 2022, 10, 107870. [Google Scholar] [CrossRef]
- Parmar, M.; Thakur, L.S. Heavy Metal Cu, Ni, and Zn: Toxicity, Health Hazards and Their Removal Techniques by Low-Cost Adsorbents: A Short Overview. Int. J. Plant Anim. Environ. Sci. 2013, 3, 143–157. [Google Scholar]
- Khoualdia, B.; Loungou, M.; Elaloui, E. Adsorption of Organic Matter from Industrial Phosphoric Acid (H3PO4) onto Activated Bentonite. Arab. J. Chem. 2017, 10, S1073–S1080. [Google Scholar] [CrossRef]
- Bouaziz, S. Les Matières Premières Naturelles du Gouvernorat de Tataouine: Caractérisation et Utilisations; ODS: Medenine, Tunisia, 2005; p. 285. [Google Scholar]
- Mahmoudi, S.; Bennour, A.; Meguebli, A.; Srasra, E.; Zargouni, F. Characterization and traditional ceramic application of clays from the Douiret region in South Tunisia. Appl. Clay Sci. 2016, 127, 78–87. [Google Scholar] [CrossRef]
- Ouaja, M.; Barale, G.; Philippe, M.; Ferry, S. Occurrence of an in situ fern grove in the Aptian Douiret Formation, Tataouine area, South-Tunisia. Geobios 2011, 44, 473–479. [Google Scholar] [CrossRef]
- Brown, G. Crystal Structures of Clay Minerals and Their X-ray Identification; The Mineralogical Society of Great Britain and Ireland: Twickenham, UK, 1982. [Google Scholar]
- Gueu, S.; Finqueneisel, G.; Zimny, T.; Bartier, D.; Yao, B.K. Physicochemical characterization of three natural clays used as adsorbent for the humic acid removal from aqueous solution. Adsorp. Sci. Technol. 2019, 37, 77–94. [Google Scholar] [CrossRef]
- Aboulhassane, A.; El Idrissi, A.N.; Bounou, Y.; Zakaria, D. 29% P2O5 phosphoric acid desulphation: Enhancing concentration unit performance. Am. J. Analyt. Chem. 2019, 10, 65–75. [Google Scholar] [CrossRef]
- Gouider, M.; Feki, M.; Sayadi, S. Separative recovery with lime of phosphate and fluoride from an acidic effluent containing H3PO4, HF and/or H2SiF6. J. Hazard. Mater. 2009, 170, 962–968. [Google Scholar] [CrossRef]
- Hamza, W.; Chtara, C.; Benzina, M. Retention of organic matter contained in industrial phosphoric acid solution by raw Tunisian clays: Kinetic equilibrium study. J. Chem. 2013, 2013, 218786. [Google Scholar] [CrossRef]
- Husien, S.; El-Taweel, R.M.; Mohamed, N.; Abdel-Aziz, A.; Alrefaey, K.; Elshabrawey, S.O.; Mostafa, N.G.; Said, L.A.; Fahim, I.S.; Radwan, A.G. Potentials of algae-based activated carbon for the treatment of M. orange in wastewater. Case Stud. Chem. Environ. Eng. 2023, 7, 100330. [Google Scholar] [CrossRef]
- Abin-Bazaine, A.; Trujillo, A.C.; Olmos-Marquez, M. Enlightenment of the Adsorption Phenomenon: Adsorption Isotherms in Wastewater Treatment. In Wastewater Treatment; Intechopen: London, UK, 2022; pp. 1–15. [Google Scholar]
- Trinh, V.T.; Nguyen, T.M.P.; Van, H.T.; Hoang, L.P.; Nguyen, T.V.; Ha, L.T.; Vu, X.H.; Pham, T.T.; Quang, N.V.; Nguyen, X.C. Phosphate adsorption by silver nanoparticles-loaded activated carbon derived from tea residue. Sci. Rep. 2020, 10, 3634. [Google Scholar] [CrossRef]
- Almeida-Naranjo, C.E.; Aldás, M.B.; Cabrera, G.; Guerrero, V.H. Caffeine elimination from synthetic wastewater using magnetic fruit peel composites: Investigating material properties, isotherm behavior, and kinetic patterns. Environ. Chall. 2021, 5, 100343. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Mohamed, A.M.G.; Keshawy, M.; Abd elMoghny, T.; Shehata, N. Adsorption of heavy metals and hardness ions from groundwater onto modified zeolite: Batch and column studies. Alex. Eng. J. 2022, 61, 4189–4207. [Google Scholar] [CrossRef]
- Winayu, B.N.R.; Mao, W.H.; Chu, H. Combination of rGO/S, N/TiO2 for enhancing visible light-driven toluene photocatalytic degradation. Sustain. Environ. Res. 2022, 32, 34. [Google Scholar] [CrossRef]
- Jarraya, I.; Fourmentin, S.; Benzina, M.; Bouaziz, S. VOC Adsorption on Raw and Modified Clay Materials. Chem. Geol. 2010, 275, 1–8. [Google Scholar] [CrossRef]
- Amri, I.; Ouakouak, A.; Hamdi, W.; Srasra, E.; Hamdi, N. Removal of Non-Steroidal Drug from Waste Water Using Synthetic Zeolites from Illito-Kaolinitic Clays. Water Air Soil Pollut. 2022, 233, 369. [Google Scholar] [CrossRef]
- Ritz, M.; Vaculikova, L.; Plevova, E. Application of Infrared Spectroscopy and Chemometric Methods to Identification of Selected Minerals. J. Anal. Chem. 2011, 8, 47–58. [Google Scholar]
- Mendhe, V.A.; Mishra, S.; Khangar, R.G.; Kamble, A.D.; Kumar, D.; Varma, A.K.; Singh, H.; Kumar, S.; Bannerjee, M. Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications for shale gas reservoir. J. Earth Sci. 2017, 28, 897–916. [Google Scholar] [CrossRef]
- El-Zahhar, A.A.; Ali, M.M.; Ahmed, A.M.; Khalifa, M.E.; Abdel-Bary, E.M. Removal of Iron from Wet-Process Phosphoric Acid Using Titanium Silicate-Polymer Composite. CTAIJ 2015, 10, 210–219. [Google Scholar]
- Hamza, W.; Chtara, C.; Benzina, M. Purification of 54% industrial phosphoric acid through Fe-pillared bentonite. Environ. Sci. Pollut. Res. 2016, 23, 15820–15831. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Bizi, M.; El Bachra, F.E. Transport of carbamazepine, ciprofloxacin, and sulfamethoxazole in activated carbon: Solubility and correlations between molecular structure and diffusional characteristics. Molecules 2021, 26, 7318. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, X.; Huang, H. Kinetics and Thermodynamics of Reserpine Adsorption onto Strong Acidic Cationic Exchange Fiber. PLoS ONE 2015, 10, e0138619. [Google Scholar] [CrossRef]
- Nollet, H.; Roels, M.; Lutgen, P.; Van der Meeren, P.; Verstraete, W. Removal of PCBs from wastewater using fly ash. Chemosphere 2003, 53, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Hameed, B.H.; Ahmad, A.A.; Aziz, N. Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. J. Chem. Eng. 2007, 133, 195–203. [Google Scholar] [CrossRef]
- Boualia, A.; Mellah, A.; Aissaoui, T.T.; Menacer, K.; Silem, A. Adsorption of Organic Matter Contained in Industrial H3PO4 onto Bentonite: Batch-Contact Time and Kinetic Study. Appl. Clay Sci. 1993, 7, 431–445. [Google Scholar] [CrossRef]
Element | OM | Al | Fe | Mg | F | Cd | Cr | Mn | V | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Content (ppm) | 570 | 4127 | 3420 | 7522 | 3700 | 24 | 312 | 41 | 82 | 157 |
Constituent | SiO2 | Al2O3 | Fe2O3 | CaO | SO3 | K2O | Na2O | Cl | MgO | P2O5 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Content (wt%) | 53.27 | 19.29 | 8.81 | traces | 0.79 | 4.06 | 0.12 | 0.07 | 2.18 | 0.12 | 10.86 | 99.57 |
Parameter | BET Surface Area (m2·g−1) | Mean Pore Diameter (A°) | Total Pore Volume (cm3·g−1) |
---|---|---|---|
Value | 76.784 | 31.336 | 0.127 |
T (°C) | qexp (mg·g−1) | Pseudo First Order | Pseudo Second Order | ||||
---|---|---|---|---|---|---|---|
R2 | qe (mg·g−1) | k1 (min−1) | R2 | qe (mg·g−1) | k2 (g·mg−1·min−1) | ||
60 | 41.36 | 0.961 | 26.28 | 0.0806 | 0.999 | 43.86 | 0.0092 |
50 | 39.50 | 0.963 | 26.08 | 0.0712 | 0.999 | 42.37 | 0.0051 |
40 | 36.58 | 0.948 | 26.19 | 0.0615 | 0.999 | 40 | 0.0037 |
30 | 34.02 | 0.983 | 27.27 | 0.0644 | 0.999 | 38.16 | 0.0029 |
25 | 30.66 | 0.998 | 29.04 | 0.0697 | 0.998 | 36.90 | 0.0024 |
T (°C) | First Step | Second Step | |||
---|---|---|---|---|---|
kint 1 (mg·g−1·min−1/2) | R2 | kint 2 (mg·g−1·min−1/2) | C (mg·g−1) | R2 | |
60 | 10.32 | 0.9946 | 3.26 | 21.76 | 0.9673 |
50 | 9.31 | 0.9964 | 3.31 | 18.65 | 0.9788 |
40 | 7.51 | 0.9980 | 3.63 | 13.33 | 0.9642 |
30 | 6.26 | 0.9930 | 3.83 | 9.04 | 0.9642 |
25 | 5.09 | 0.9903 | 4.26 | 3.81 | 0.9862 |
Model | Equation | Parameter | Unit | Value |
---|---|---|---|---|
Freundlich | (7) | KF | (mg·g−1)1−1/n | 2.289 × 10−10 |
n | - | 0.214 | ||
R2 | - | 0.969 | ||
χ2 | - | 12.413 | ||
SSR | - | 973.907 | ||
Redlich–Peterson | (8) | g | - | −11.451 × 10−3 |
KR | mg·g−1 | −11.067 ×10−4 | ||
aR | kg·mg−1 | −1.072 | ||
R2 | - | 0.929 | ||
χ2 | - | 30.611 | ||
SSR | - | 2247.477 | ||
Sips | (9) | n | - | 0.145 |
qmax | kg·mg | 364.473 | ||
b | (kg·mg)g | 2.784 × 10−3 | ||
R2 | - | 0.982 | ||
χ2 | - | 7.338 | ||
SSR | - | 570.452 |
T (K) | ΔG° (kJ·mol−1) | ΔH° (kJ·mol−1) | ΔS° (J·mol−1·K−1) |
---|---|---|---|
298.15 | −11.527 | 10.329 | 73.008 |
308.15 | −12.111 | ||
318.15 | −12.752 | ||
328.15 | −13.660 | ||
333.15 | −14.075 |
Adsorbent | Temperature (°C) | Sorbent Dosage | Contact Time (min) | qmax (mg·g−1) | Isotherm Model | Reference |
---|---|---|---|---|---|---|
Tunisian bentonite (Gafsa) | 50 30 | - | 30 | 18.52 14.71 | Langmuir | [26] |
Tunisian bentonite (EL-Hamma) | 35 | 20 g·L−1 | 90 | 17.26 | Langmuir | [34] |
Algerian bentonite | 30 | 8 g·L−1 | 95 | 153.28 | Langmuir | [52] |
Tunisian illite (Douiret) | 60 | 8 g·kg−1 | 50 | 364.47 | Sips | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oueriemi, S.; Ben Amor, H.; Hassen, W.; Hadrich, B.; Maatki, C.; Kriaa, K.; Kolsi, L. Removal of Organic Matter from Tunisian Industrial Phosphoric Acid by Adsorption onto Purified Natural Illite/Kaolinite Clay: Kinetics, Isothermal and Thermodynamic Studies. Materials 2023, 16, 6228. https://doi.org/10.3390/ma16186228
Oueriemi S, Ben Amor H, Hassen W, Hadrich B, Maatki C, Kriaa K, Kolsi L. Removal of Organic Matter from Tunisian Industrial Phosphoric Acid by Adsorption onto Purified Natural Illite/Kaolinite Clay: Kinetics, Isothermal and Thermodynamic Studies. Materials. 2023; 16(18):6228. https://doi.org/10.3390/ma16186228
Chicago/Turabian StyleOueriemi, Sina, Hedi Ben Amor, Walid Hassen, Bilel Hadrich, Chemseddine Maatki, Karim Kriaa, and Lioua Kolsi. 2023. "Removal of Organic Matter from Tunisian Industrial Phosphoric Acid by Adsorption onto Purified Natural Illite/Kaolinite Clay: Kinetics, Isothermal and Thermodynamic Studies" Materials 16, no. 18: 6228. https://doi.org/10.3390/ma16186228
APA StyleOueriemi, S., Ben Amor, H., Hassen, W., Hadrich, B., Maatki, C., Kriaa, K., & Kolsi, L. (2023). Removal of Organic Matter from Tunisian Industrial Phosphoric Acid by Adsorption onto Purified Natural Illite/Kaolinite Clay: Kinetics, Isothermal and Thermodynamic Studies. Materials, 16(18), 6228. https://doi.org/10.3390/ma16186228