Glass-Ceramic Fillers Based on Zinc Oxide–Silica Systems for Dental Composite Resins: Effect on Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instrumentation
2.2. Preparation of SiO2–ZnO Nano-Composite
2.3. Preparation of Zn2SiO4
2.4. Sample Preparation
3. Result
3.1. Filler Characterization Results
3.2. Dental Composite Samples Characterization Results
3.3. Mechanical Properties Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Habib, E.; Wang, R.; Wang, Y.; Zhu, M.; Zhu, X.X. Inorganic fillers for dental resin composites: Present and future. ACS Biomater. Sci. Eng. 2016, 2, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Amiri, P.; Talebi, Z.; Semnani, D.; Bagheri, R.; Fashandi, H. Improved performance of Bis-GMA dental composites reinforced with surface-modified PAN nanofibers. J. Mater. Sci. Mater. Med. 2021, 32, 82. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Liu, F.; He, J. Physicochemical properties of Bis-GMA/TEGDMA dental resin reinforced with silanized multi-walled carbon nanotubes. Silicon 2019, 11, 1345–1353. [Google Scholar] [CrossRef]
- Barszczewska-Rybarek, I.; Chladek, G. Studies on the curing efficiency and mechanical properties of Bis-GMA and TEGDMA nanocomposites containing silver nanoparticles. Int. J. Mol. Sci. 2018, 19, 3937. [Google Scholar] [CrossRef]
- Barszczewska-Rybarek, I.M.; Chrószcz, M.W.; Chladek, G. Physicochemical and mechanical properties of bis-gma/tegdma dental composite resins enriched with quaternary ammonium polyethylenimine nanoparticles. Materials 2021, 14, 2037. [Google Scholar] [CrossRef]
- Par, M.; Plančak, L.; Ratkovski, L.; Tauböck, T.T.; Marovic, D.; Attin, T.; Tarle, Z. Improved flexural properties of experimental resin composites functionalized with a customized low-sodium bioactive glass. Polymers 2022, 14, 4289. [Google Scholar] [CrossRef]
- Wang, X.; Cai, Q.; Zhang, X.; Wei, Y.; Xu, M.; Yang, X.; Ma, Q.; Cheng, Y.; Deng, X. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mater. Sci. Eng. C 2016, 59, 464–470. [Google Scholar] [CrossRef]
- Alsharif, S.O.; Akil, H.B.; Abd El-Aziz, N.A.; Ahmad, Z.A. Effect of alumina particles loading on the mechanical properties of light-cured dental resin composites. Mater. Des. 2014, 54, 430–435. [Google Scholar] [CrossRef]
- Habib, E.; Wang, R.; Zhu, X.X. Monodisperse silica-filled composite restoratives mechanical and light transmission properties. Dent. Mater. 2017, 33, 280–287. [Google Scholar] [CrossRef]
- Zhang, H.; Darvell, B.W. Mechanical properties of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. Dent. Mater. 2012, 28, 824–830. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Y.; Liu, Y.; Liao, Y.; Hedin, N.E.; Fong, H. Fabrication and evaluation of Bis-GMA/TEGDMA dental resins/composites containing nano fibrillar silicate. Dent. Mater. 2008, 24, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Shen, J.; Wu, X.; He, F.; Xie, H.; Chen, C. Effects of nano-zirconia fillers conditioned with phosphate ester monomers on the conversion and mechanical properties of Bis-GMA-and UDMA-based resin composites. J. Dent. 2020, 94, 103306. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Sagi, S.; Zhang, L.; Liao, Y.; Cowles, D.M.; Sun, Y.; Fong, H. Electrospun nano-scaled glass fiber reinforcement of bis-GMA/TEGDMA dental composites. J. Appl. Polym. Sci. 2008, 110, 2063–2070. [Google Scholar] [CrossRef]
- Cheng, L.; Zhou, X.; Zhong, H.; Deng, X.; Cai, Q.; Yang, X. NaF-loaded core–shell PAN–PMMA nanofibers as reinforcements for Bis-GMA/TEGDMA restorative resins. Mater. Sci. Eng. C 2014, 34, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liao, M.; Hong, G.; Dai, S.; Shen, J.; Xie, H.; Chen, C. Effect of APTES-or MPTS-conditioned nanozirconia fillers on mechanical properties of Bis-GMA-based resin composites. ACS Omega 2020, 5, 32540–32550. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Engqvist, H.; Xia, W. Glass–ceramics in dentistry: A review. Materials 2020, 13, 1049. [Google Scholar] [CrossRef]
- Elsaka, S.E.; Elnaghy, A.M. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent. Mater. 2016, 32, 908–914. [Google Scholar] [CrossRef]
- GKaur, G.; Kumar, V.; Baino, F.; Mauro, J.C.; Pickrell, G.; Evans, I.; Bretcanu, O. Mechanical properties of bioactive glasses, ceramics, glass-ceramics and composites: State-of-the-art review and future challenges. Mater. Sci. Eng. C 2019, 104, 109895. [Google Scholar] [CrossRef]
- Bahramian, F.; Fazlinia, A.; Mansoor, S.S.; Ghashang, M.; Azimi, F.; Najafi Biregan, M. Preparation of 3, 4, 5-substituted furan-2 (5 H)-ones using HY Zeolite nano-powder as an efficient catalyst. Res. Chem. Intermed. 2016, 42, 6501–6510. [Google Scholar] [CrossRef]
- Roudbaraki, S.J.; Mansoor, S.S.; Ghashang, M. Aqueous media synthesis of pyrano [3, 2-c] chromen derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Polycycl. Aromat. Compd. 2021, 41, 211–222. [Google Scholar] [CrossRef]
- Jafari, M.; Hassanzadeh-Tabrizi, S.A.; Ghashang, M.; Pournajaf, R. Characterization of Ba2+-added alumina/cobalt nanoceramic pigment prepared by polyacrylamide gel method. Ceram. Int. 2014, 40, 11877–11881. [Google Scholar] [CrossRef]
- Reza Mohammad Shafiee, M.; Kargar, M.; Sadat Hashemi, M.; Ghashang, M. Green synthesis of NiFe2O4/Fe2O3/CeO2 nanocomposite in a Walnut Green Hulls extract medium: Magnetic properties and characterization. Curr. Nanosci. 2016, 12, 645–649. [Google Scholar] [CrossRef]
- Ghashang, M. An Aurivillius perovskite nano-structure of SrBi4Ti4O15: Efficient catalyst for the preparation of novel dihydronaphtho [2′, 1′: 4, 5] thieno [2, 3-d] pyrimidin-7 (6 H)-one derivatives using HSBM technique. J. Iran. Chem. Soc. 2018, 15, 55–60. [Google Scholar] [CrossRef]
- New American Dental Association specification no. 27 for direct filling resins. Council on Dental Materials and Devices. J. Am. Dent. Assoc. 1977, 94, 1191–1194.
- ISO 10477:1992(E); Dentistry—Polymer-based crown and bridge materials. International Organization for Standardization: Geneva, Switzerland, 1992.
- Alkemper, J.; Rentsch, H.; Dermann, K.; Ritzhaupt-Kleissl, H.J.; Hausselt, J.; Albert, P.; Gall, C.; Aktiengesellschaft, D.-H. Dental Material Comprising Porous Glass Ceramics, Porous Glass Ceramics, Processes and Use. United States Patent US 6362251, 26 March 2002. [Google Scholar]
- Zandinejad, A.A.; Atai, M.; Pahlevan, A. The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dent. Mater. 2006, 22, 382–387. [Google Scholar] [CrossRef]
- Samuel, S.P.; Li, S.; Mukherjee, I.; Guo, Y.; Patel, A.C.; Baran, G.; Wei, Y. Mechanical properties of experimental dental composites containing a combination of mesoporous and nonporous spherical silica as fillers. Dent. Mater. 2009, 25, 296–301. [Google Scholar] [CrossRef]
- Hosseinalipour, M.; Javadpour, J.; Rezaie, H.; Dadras, T.; Nemati Hayati, A. Investigation of Mechanical Properties of Experimental Bis-GMA/TEGDMA Dental Composite Resins Containing Various Mass Fractions of Silica Nanoparticles. J. Prosthodont. 2010, 19, 112–117. [Google Scholar] [CrossRef]
- Krause, W.R.; Park, S.H.; Straup, R.A. Mechanical properties of BIS-GMA resin short glass fiber composites. J. Biomed. Mater. Res. 1989, 23, 1195–1211. [Google Scholar] [CrossRef]
- Liu, F.; Sun, B.; Jiang, X.; Aldeyab, S.S.; Zhang, Q.; Zhu, M. Mechanical properties of dental resin/composite containing urchin-like hydroxyapatite. Dent. Mater. 2014, 30, 1358–1368. [Google Scholar] [CrossRef]
- Fong, H. Electrospun nylon 6 nanofiber reinforced BIS-GMA/TEGDMA dental restorative composite resins. Polymer 2004, 45, 2427–2432. [Google Scholar] [CrossRef]
- Paolone, G.; Mandurino, M.; De Palma, F.; Mazzitelli, C.; Scotti, N.; Breschi, L.; Gherlone, E.; Cantatore, G.; Vichi, A. Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review. Polymers 2023, 15, 464. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Bis-GMA (wt%) | TEGDMA (wt%) | CQ/3-NDADM (wt%) | Filler (wt%) |
---|---|---|---|---|
X | 70 | 29 | 0.5/0.5 | - |
A1 | 69 | 28 | 0.5/0.5 | SiO2–ZnO (2) |
A2 | 67.5 | 26.5 | 0.5/0.5 | SiO2–ZnO (5) |
A3 | 66 | 25 | 0.5/0.5 | SiO2–ZnO (8) |
A4 | 65 | 24 | 0.5/0.5 | SiO2–ZnO (10) |
A5 | 62.5 | 21.5 | 0.5/0.5 | SiO2–ZnO (15) |
A6 | 69 | 28 | 0.5/0.5 | Zn2SiO4 (2) |
A7 | 67.5 | 26.5 | 0.5/0.5 | Zn2SiO4 (5) |
A8 | 66 | 25 | 0.5/0.5 | Zn2SiO4 (8) |
A9 | 65 | 24 | 0.5/0.5 | Zn2SiO4 (10) |
A10 | 62.5 | 21.5 | 0.5/0.5 | Zn2SiO4 (15) |
Filler | Bis-GMA/TEGDMA wt% | FS [MPa] | FM [GPa] | DTS [MPa] | CS [MPa] | Ref. |
---|---|---|---|---|---|---|
- | 70/29.45 | 97.9 | 3.4 | 19.8 | 144.9 | This work |
A3 | 65/26.45 | 123.4 | 8.64 | 34.24 | 183.83 | This work |
A8 | 65/26.45 | 131.3 | 11.33 | 41.25 | 190.56 | This work |
SiO2–ZnO bulk (8 wt%) | 65/24.45 | 105.74 | 6.45 | 24.14 | 155.31 | This work |
SiO2 (6wt%) + ZnO (2 wt%) | 65/24.45 | 115.02 | 7.82 | 31.21 | 177.24 | This work |
ZnO (6 wt%) | 68/29.45 | 91.25 | 3.26 | 17.09 | 142.02 | This work |
SiO2 (6 wt%) | 68/29.45 | 103.49 | 4.9 | 26.13 | 155.67 | This work |
Glass (Specialty Glass, Willow Grove, PA, USA) 2–4 m. (73 wt%) | 70/30 | 43.6 | 8.6 | 42.5 | - | Zandinejad et al. [27] |
Mesoporous and nonporous spherical silica (70 wt%) | 50/50 | 72 | 6.7 | - | 191 | Samuel et al. [28] |
Silica nanoparticles modified with γ-methacryloxy propyl trimethoxy silane (40 wt%) | 70/30 | 149.74 | - | - | - | Hosseinalipour et al. [29] |
Quaternary ammonium polyethylenimine nanoparticles (2 wt%) | 60/40 | 63.09 | 3.712 | - | - | Barszczewska-Rybarek et al. [5] |
Short glass fibers (70 wt%) | 70/30 | - | 4.59 | - | 66.6 | Krause et al. [30] |
Urchin-like hydroxyapatite (10 wt%) | 49.5/49.5 | 123.5 | - | 42.7 | 363.5 | Liu et al. [31] |
Electrospun nylon 6 nanofiber (7.5 wt%) | 50/50 | 112.1 | 2.726 | - | - | Fong [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torkian, P.; Mortazavi Najafabadi, S.; Ghashang, M.; Grzelczyk, D. Glass-Ceramic Fillers Based on Zinc Oxide–Silica Systems for Dental Composite Resins: Effect on Mechanical Properties. Materials 2023, 16, 6268. https://doi.org/10.3390/ma16186268
Torkian P, Mortazavi Najafabadi S, Ghashang M, Grzelczyk D. Glass-Ceramic Fillers Based on Zinc Oxide–Silica Systems for Dental Composite Resins: Effect on Mechanical Properties. Materials. 2023; 16(18):6268. https://doi.org/10.3390/ma16186268
Chicago/Turabian StyleTorkian, Peyman, SayedMohsen Mortazavi Najafabadi, Majid Ghashang, and Dariusz Grzelczyk. 2023. "Glass-Ceramic Fillers Based on Zinc Oxide–Silica Systems for Dental Composite Resins: Effect on Mechanical Properties" Materials 16, no. 18: 6268. https://doi.org/10.3390/ma16186268
APA StyleTorkian, P., Mortazavi Najafabadi, S., Ghashang, M., & Grzelczyk, D. (2023). Glass-Ceramic Fillers Based on Zinc Oxide–Silica Systems for Dental Composite Resins: Effect on Mechanical Properties. Materials, 16(18), 6268. https://doi.org/10.3390/ma16186268