Green Thermal Aggregates: Influence of the Physical Properties of Recycled Aggregates with Phase Change Materials
Abstract
:1. Introduction
- SDG 1: End poverty in all its forms everywhere.
- SDG 7: Ensure access to affordable, reliable, sustainable, and modern energy for all.
- SDG 12: Ensure sustainable consumption and production patterns.
- Characterization of a recycled aggregate from Portugal.
- Functionalization of a recycled aggregate with PCM.
- Evaluation of two methods of incorporating PCM into the aggregate (under vacuum conditions and at atmospheric pressure).
- Evaluation of the mechanical properties of the concretes with the incorporation of RA functionalized with PCM.
2. Materials and Methods
2.1. Recycled Aggregate (RA)
2.2. Pure Paraffin (PP)
3. Experimental Program
3.1. Physical Characterization of RA
3.1.1. The Proportion of Constituent Materials of RA
3.1.2. The Particle Size Distribution of Aggregates
3.1.3. Density and Water Absorption of Materials
3.2. PP Volumetric Variation Test
3.3. Functionalized Aggregate Production
3.4. Compressive Strength of Concrete with RA-PP
4. Results and Discussions
4.1. Physical Properties of RA
4.1.1. RA Composition
4.1.2. Particle Size Distribution of RA
4.1.3. Density of Recycled Aggregates
4.1.4. Water Absorption of Recycled Aggregates
4.2. PP Volumetric Variation
4.3. Functionalized Aggregate
4.4. Compressive Strength of Concrete Mixes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Housing and Urban-Rural Development, China Promotes Construction Waste Management and Resource Utilization. 2021. Available online: http://www.gov.cn/xinwen/2021-12/09/content_5659650.htm (accessed on 10 May 2023).
- United States Environmental Agency, Construction and Demolition Debris: Material-Specific. 2021. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/construction-and-demolition-debris-material#C&Doverview (accessed on 20 April 2023).
- Eurostat, Construction Waste Production in Europe in 2020. 2023. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Waste_statistics#Waste_generation_excluding_major_mineral_waste (accessed on 10 April 2023).
- Nehal, E.; Abobakr, A.; Eslam, M.A.; Ghasan, A. Construction and Demolition Waste Management Research: A Science Mapping Analysis. Int. J. Environ. Res. Public Health 2022, 19, 4496. [Google Scholar] [CrossRef]
- Zhao, X.; Ronald, W.; Pushpitha, K.; Wesley, B.; Josua, P. Construction and demolition waste management in Australia: A mini-review. Waste Manag. Res. 2022, 40, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Gobal Cement and Concrete Association (GCCA). The GCCA 2050 Cement and Concrete Industry Roadmap for Net Zero Concrete. 2021. Available online: https://gccassociation.org/concretefuture/wp-content/uploads/2021/10/GCCA-Concrete-Future-Roadmap.pdf (accessed on 22 March 2023).
- Clarence, P.G.; Jason, M.C.O.; Ma, K.M.D. Circular economy on construction and demolition waste: A Literature Review on Material Recovery and Production. Materials 2020, 13, 2970. [Google Scholar] [CrossRef]
- Miguel, B.; António, P.C.D.; Jorge, B.; Luis, E.; Diogo, P. On the development of a technical specification for the use of fine recycled aggregates from construction and demolition waste in concrete production. Materials 2020, 13, 4228. [Google Scholar] [CrossRef]
- Krezel, Z.A.; McManus, A.K. Recycled aggregate concrete sound barriers for urban freeways. Waste Manag. Ser. 2000, 1, 884–892. [Google Scholar] [CrossRef]
- Ravindra, K.D.; Neil, A.H.; Mukesh, C.L. Sustainable Construction: Use of Recycled Concrete Aggregate. In Proceedings of the International Symposium, London, UK, 11–12 November 1998; pp. 381–388. [Google Scholar] [CrossRef]
- Fernanda, A.S.; Flavio, A.S. Recycled aggregates from construction and demolition waste towards an application on structural concrete: A review. J. Build. Eng. 2022, 52, e104452. [Google Scholar] [CrossRef]
- Brito, J.; Pereira, A.S.; Correia, J.R. Mechanical behaviour of non-structural concrete made with recycled ceramic aggregates. Cem. Concr. Compos. 2005, 27, 429–433. [Google Scholar] [CrossRef]
- Zahra, A.; Mohammad, M.; Mahroo, F.; Tero, L.; Mehran, M.; Mirja, I. Construction and demolition waste as recycled aggregates in alkali-activated concretes. Materials 2019, 12, 4016. [Google Scholar] [CrossRef]
- Ana, M.M.; João, M.P.Q.D.; Ana, S.G. Energy-Efficiency Passive Strategies for Mediterranean Climate: An Overview. Energies 2022, 15, 2572. [Google Scholar] [CrossRef]
- Global Alliance for Buildings and Construction (GlobalABC), 2020 Global Status Report for Buildings and Construction. 2020. Available online: https://globalabc.org/sites/default/files/inline-files/2020%20Buildings%20GSR_FULL%20REPORT.pdf (accessed on 10 December 2022).
- Pushpendra, K.S.R.; Naveen, K.G.; Devanand, Y.; Shailendra, K.S.; Sanjay, K. Thermal performance of the building envelope integrated with phase change material for thermal energy storage: An updated review. Sustain. Cities Soc. 2022, 79, e103690. [Google Scholar] [CrossRef]
- Kemal, C.; Beyza, B.; Berk, K.; Yeliz, K.; Halime, P. Direct Incorporation of Butyl Stearate as Phase Change Material into Concrete for Energy Saving in Buildings. J. Mod. Power Syst. Clean Energy 2007, 5, 64–68. [Google Scholar] [CrossRef]
- Mohamad, R.; Sabine, H. The influence of macro-encapsulated PCM panel’s geometry on heat transfer in a ceiling application. Adv. Build. Energy Res. 2021, 16, 445–465. [Google Scholar] [CrossRef]
- Li, G. Sensible heat thermal storage energy and exergy performance evaluations. Renew. Sust. Energy Rev. 2016, 53, 897–923. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, Y.; Xin, Q.; Li, J. Research status and application of phase change materials. J. Mater. Eng. 2019, 47, 897–923. [Google Scholar] [CrossRef]
- Ling, T.C.; Poon, C.S. Use of phase change materials for thermal energy storage in concrete: An overview. Constr. Build. Mater. 2013, 46, 55–62. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, S.; Zeng, C.; Zhang, Y.; Li, Y.; Han, X.; Liu, Y.; Yang, X. Experimental thermal study of a new PCM-concrete thermal storage block (PCM-CTSB). Constr. Build. Mater. 2021, 293, e123540. [Google Scholar] [CrossRef]
- Rathore, P.K.S.; Shukla, S. Kumar Improvement in Thermal Properties of PCM/Expanded Vermiculite/Expanded Graphite Shape Stabilized Composite PCM for Building Energy Applications. Renew. Energy 2021, 176, 295–304. [Google Scholar] [CrossRef]
- Sarcinella, A.; Aguiar, J.L.B.; Frigione, M. Physical Properties of Eco-Sustainable Form-Stable Phase Change Materials Included in Mortars Suitable for Buildings Located in Different Continental Regions. Materials 2022, 15, 2497. [Google Scholar] [CrossRef]
- Athienitis, A.K.; Liu, C.; Hawes, D.; Banu, D.; Feldman, D. Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage. Build. Environ. 1997, 32, 405–410. [Google Scholar] [CrossRef]
- Shilei, L.; Neng, Z.; Guohui, F. Impact of phase change wall room on indoor thermal environment in winter. Energy Build. 2006, 38, 18–24. [Google Scholar] [CrossRef]
- Zhang, N.; Duan, H. A comparative study on the classification management methods and treatment modes of construction waste in China and abroad. In Proceedings of the Science and Technology Annual Conference of the Chinese Society for Environmental Sciences, Xiamen, China, 7–9 June 2017; pp. 1798–1809. Available online: https://www.researchgate.net/publication/340163131 (accessed on 20 April 2023).
- Rathore, P.K.S.; Shukla, S.K. Enhanced thermophysical properties of organic PCM through shape stabilization for thermal energy storage in buildings: A state of the art review. Energy Build. 2021, 236, e110799. [Google Scholar] [CrossRef]
- Yan, J. Study on Thermal Management System of Power Battery Based on Phase Change Heat Dissipation. 2017. Available online: https://wap.cnki.net/touch/web/Dissertation/Article/10358-1017073532.nh.html (accessed on 15 March 2022).
- Illampas, R.; Rigopoulos, I.; Ioannou, I. Influence of microencapsulated Phase Change Materials (PCMs) on the properties of polymer modified cementitious repair mortar. J. Build. Eng. 2021, 40, e102328. [Google Scholar] [CrossRef]
- Cunha, S.; Aguiar, J.B.; Tadeu, A. Thermal performance and cost analysis of mortars made with PCM and different binders. Constr. Build. Mater. 2016, 122, 637–648. [Google Scholar] [CrossRef]
- Cunha, S.; Aguiar, J.B. Phase change materials composite boards and mortars: Mixture design, physical, mechanical and thermal behavior. J. Energy Storage 2022, 53, e105135. [Google Scholar] [CrossRef]
- Ryms, M.; Lewandowski, W.M.; Klugmann, R.E.; Denda, H.; Wcisło, P. The use of lightweight aggregate saturated with PCM as a temperature stabilizing material for road surfaces. Appl. Therm. Eng. 2015, 81, 313–324. [Google Scholar] [CrossRef]
- Zhang, N.; Yuan, Y.; Li, T.; Cao, X.; Yang, X. Study on thermal property of lauric-palmitic-stearic acid/vermiculite composite as form-stable phase change material for energy storage. Adv. Mech. Eng. 2015, 7, 1–8. [Google Scholar] [CrossRef]
- Lv, P.; Liu, C.; Rao, Z. Review on clay mineral-based form-stable phase change materials: Preparation, characterization and applications. Renew. Sust. Energy Rev. 2017, 68, 707–726. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, R.; Huang, Z.; Tang, C.; Huang, Y.; Liu, Y.; Fang, M.; Wu, X.; Min, X.; Xu, Y. Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials. Energy Build. 2017, 149, 463–470. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M.; Sarcinella, A.; Aguiar, J.L.B. Applications of sustainable polymer-based phase change materials in mortars composed by different binders. Materials 2019, 12, 3502. [Google Scholar] [CrossRef] [PubMed]
- Frigione, M.; Lettieri, M.; Sarcinella, A.; Aguiar, J.L.B. Sustainable polymer-based Phase Change Materials for energy efficiency in buildings and their application in aerial lime mortars. Constr. Build. Mater. 2020, 231, e117149. [Google Scholar] [CrossRef]
- Antonella, S.; Luis, J.; Aguiar, J.L.B.; Lettieri, M.; Cunha, S.; Mariaenrica, F. Materials Thermal Performance of Mortars Based on Different. Materials 2020, 13, 2055. [Google Scholar] [CrossRef]
- Costa, J.A.C.; Martinelli, A.E.; Nascimento, R.M.; Mendes, A.M. Microstructural design and thermal characterization of composite diatomite-vermiculite paraffin-based form-stable PCM for cementitious mortars. Constr. Build. Mater. 2020, 232, e117167. [Google Scholar] [CrossRef]
- Uthaichotirat, P.; Sukontasukkul, P.; Jitsangiam, P.; Suksiripattanapong, C.; Sata, V.; Chindaprasirt, P. Thermal and sound properties of concrete mixed with high porous aggregates from manufacturing waste impregnated with phase change material. J. Build. Eng. 2020, 29, e101111. [Google Scholar] [CrossRef]
- Akeiber, H.; Nejat, P.; Muhd, Z.A.M.; Wahid, A.M.; Jomehzadeh, F.; Famileh, I.Z.; Calautit, J.K.; Hughes, B.R.; Zaki, S.A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sust. Energ. Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Peng, S.; Fuchs, A.; Wirtz, R.A. Polymeric phase change composites for thermal energy storage. J. Appl. Polym. Sci. 2004, 93, 1240–1251. [Google Scholar] [CrossRef]
- Rubitherm Campany, RT22HC Technical Parameters. 2022. Available online: www.rubitherm.com (accessed on 15 October 2022).
- EN 933-1; Tests of Geometric Properties of Aggregates, Part 1: Particle Size Analysis—Sieving Method. European Committee for Standardization (CEN): Brussels, Belgium, 2012.
- NP-581; Determination of Density and Absorption of Aggregates. National Laboratory for Civil Engineering (LNEC): Lisbon, Portugal, 1969. (In Portuguese)
- Wang, R.; Zhang, Q.; Li, Y. Deterioration of concrete under the coupling effects of freeze—Thaw cycles and other actions: A review. Constr. Build. Mater. 2016, 319, e126045. [Google Scholar] [CrossRef]
- EN 12390-3; Hardened Concrete Tests, Part 3: Compressive Strength of Test Specimens. Portuguese Quality Institute: Caparica, Portugal, 2003.
- Cardoso, R.; Silva, R.V.; Brito, J.; Dhir, R. Use of recycled aggregates from construction and demolition waste in geotechnical applications: A literature review. Waste Manag. 2016, 49, 131–145. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Density solid (at 20 °C) | 0.76 kg/L |
Density liquid (at 50 °C) | 0.7 kg/L |
Heat storage capacity ±7.5% | 190 kJ/kg |
Specific heat capacity | 2 kJ/kg·K |
Heat conductivity (both phases) | 0.2 W/(m·K) |
Flash point | >150 °C |
Max. operation temperature | 50 °C |
Mixes | Cement | Water | River Sand 0–4 mm | Gravel 4–10 mm | RA-PP |
---|---|---|---|---|---|
REF | 400 | 230 | 393 | 1035 | - |
40RA-PP-AP | 400 | 230 | 393 | 621 | 440 |
40RA-PP-CV | 400 | 230 | 393 | 621 | 446 |
80RA-PP-AP | 400 | 230 | 393 | 207 | 880 |
80RA-PP-CV | 400 | 230 | 393 | 207 | 892 |
Size (mm) | Passing Material (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mortar | Brick | Ceramic | Concrete | Lime Paste | Plastic | Glass | Soil | Stone | RA | |
63 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
31.5 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
16 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
10 | 99 | 95 | 97 | 95 | 100 | 100 | 100 | 100 | 86 | 99 |
8 | 92 | 78 | 82 | 69 | 88 | 93 | 100 | 100 | 57 | 77 |
4 | 9 | 6 | 4 | 2 | 10 | 7 | 0 | 11 | 0 | 3 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mortar | Brick | Ceramic | Concrete | Stone | Lime Paste | Plastic | RA | |
---|---|---|---|---|---|---|---|---|
Waterproof material density | 2561.2 | 2620.3 | 2519.2 | 2653.6 | 2661.1 | 2576.1 | 2351.0 | 2575.9 |
Saturated density | 2292.1 | 2191.4 | 2402.3 | 2479.2 | 2580.3 | 2279.2 | 2317.1 | 2311.5 |
Dry density | 2119.8 | 1926.7 | 2325.3 | 2373.7 | 2531.6 | 2090.8 | 2291.9 | 2143.9 |
Mortar | Brick | Ceramic | Concrete | Stone | Lime Paste | Plastic | RA | |
---|---|---|---|---|---|---|---|---|
Water absorption | 8.13 | 13.74 | 3.31 | 4.44 | 1.92 | 9.01 | 1.10 | 7.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Aguiar, J.; Cunha, S.; de Jesus, C. Green Thermal Aggregates: Influence of the Physical Properties of Recycled Aggregates with Phase Change Materials. Materials 2023, 16, 6267. https://doi.org/10.3390/ma16186267
Jia Z, Aguiar J, Cunha S, de Jesus C. Green Thermal Aggregates: Influence of the Physical Properties of Recycled Aggregates with Phase Change Materials. Materials. 2023; 16(18):6267. https://doi.org/10.3390/ma16186267
Chicago/Turabian StyleJia, Zhiyou, José Aguiar, Sandra Cunha, and Carlos de Jesus. 2023. "Green Thermal Aggregates: Influence of the Physical Properties of Recycled Aggregates with Phase Change Materials" Materials 16, no. 18: 6267. https://doi.org/10.3390/ma16186267
APA StyleJia, Z., Aguiar, J., Cunha, S., & de Jesus, C. (2023). Green Thermal Aggregates: Influence of the Physical Properties of Recycled Aggregates with Phase Change Materials. Materials, 16(18), 6267. https://doi.org/10.3390/ma16186267