On the Structural, Thermal, Micromechanical and Tribological Characterizations of Cu-Filled Acrylonitrile Butadiene Styrene Micro-Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Micro-Composites
2.3. Characterizations
3. Results and Discussions
3.1. Structural and Morphological Aspects
3.2. Micromechanical Characterizations
3.3. Friction and Wear Test Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bijwe, J. Nidhi Potential of Fibers and Solid Lubricants to Enhance the Tribo-utility of PEEK in Adverse Operating Conditions. Ind. Lubr. Tribol. 2007, 59, 156–165. [Google Scholar] [CrossRef]
- Pokropivny, V.; Lohmus, R.; Hussainova, I.; Pokropivny, A.; Vlassov, S. Introduction to Nanomaterials and Nanotechnology; Tartu University Press: Tartu, Estonia, 2007; ISBN 9949-11-741-0. [Google Scholar]
- Charfi, A.; Neili, S.; Kharrat, M.; Dammak, M. Tribological Behaviors of PTFE-Based Composites Filled with Bronze Microparticles. J. Thermoplast. Compos. Mater. 2021, 34, 1639–1653. [Google Scholar] [CrossRef]
- Trabelsi, M.; Kharrat, M.; Dammak, M. On the Friction and Wear Behaviors of PTFE Based Composites Filled with MoS2 and/or Bronze Particles. Trans. Indian Inst. Met. 2016, 69, 1119–1128. [Google Scholar] [CrossRef]
- Jongsomjit, B.; Panpranot, J.; Praserthdam, P. Effect of Nanoscale SiO2 and ZrO2 as the Fillers on the Microstructure of LLDPE Nanocomposites Synthesized via in Situ Polymerization with Zirconocene. Mater. Lett. 2007, 61, 1376–1379. [Google Scholar] [CrossRef]
- Ben Difallah, B.; Cornuault, P.-H.; Kharrat, M.; Dammak, M.; Monteil, G. On the Role of Solid Lubricant Fillers in the Tribological, Micromechanical, and Morphological Properties of PA66 Composites. J. Tribol. 2020, 142, 051901. [Google Scholar] [CrossRef]
- Shang, Y.; Zhao, Y.; Liu, Y.; Zhu, Y.; Jiang, Z.; Zhang, H. The Effect of Micron-Graphite Particle Size on the Mechanical and Tribological Properties of PEEK Composites. High Perform. Polym. 2018, 30, 153–160. [Google Scholar] [CrossRef]
- Basavaraj, E.; Ramaraj, B.; Siddaramaiah, H. Investigations on the Influence of Polytetrafluoroethylene Powder as a Filler on Physico-Mechanical and Wear Characteristics of Nylon 66/Graphite Composites. High Perform. Polym. 2012, 24, 616–624. [Google Scholar] [CrossRef]
- Shang, Y.; Wu, X.; Liu, Y.; Jiang, Z.; Wang, Z.; Jiang, Z.; Zhang, H. Preparation of PEEK/MWCNTs Composites with Excellent Mechanical and Tribological Properties. High Perform. Polym. 2019, 31, 43–50. [Google Scholar] [CrossRef]
- Mamunya, Y.P.; Davydenko, V.; Pissis, P.; Lebedev, E. Electrical and Thermal Conductivity of Polymers Filled with Metal Powders. Eur. Polym. J. 2002, 38, 1887–1897. [Google Scholar] [CrossRef]
- Bare, W.; Albano, C.; Reyes, J.; Domınguez, N. Effect of Irradiation on the Mechanical Properties of High-Density Polyethylene Reinforced with Metallic Fibres. Surf. Coat. Technol. 2002, 158, 404–407. [Google Scholar] [CrossRef]
- Tavman, I.H. Thermal and Mechanical Properties of Copper Powder Filled Poly (Ethylene) Composites. Powder Technol. 1997, 91, 63–67. [Google Scholar] [CrossRef]
- Rajesh, J.J.; Bijwe, J. Influence of Fillers on the Low Amplitude Oscillating Wear Behaviour of Polyamide 11. Wear 2004, 256, 1–8. [Google Scholar] [CrossRef]
- Brostow, W.; Buchman, A.; Buchman, E.; Olea-Mejia, O. Microhybrids of Metal Powder Incorporated in Polymeric Matrices: Friction, Mechanical Behavior, and Microstructure. Polym. Eng. Sci. 2008, 48, 1977–1981. [Google Scholar] [CrossRef]
- El-Zahraa, F.; Abdel-Jaber, G.; Khashaba, M.; Ali, W. Wear Displayed by the Scratch of Epoxy Composites Filled by Metallic Particles under the Influence of Magnetic Field. Mater. Sci. Appl. 2016, 7, 119–127. [Google Scholar] [CrossRef]
- Uflyand, I.; Drogan, E.; Burlakova, V.; Kydralieva, K.; Shershneva, I.; Dzhardimalieva, G. Testing the Mechanical and Tribological Properties of New Metal-Polymer Nanocomposite Materials Based on Linear Low-Density Polyethylene and Al65Cu22Fe13 Quasicrystals. Polym. Test. 2019, 74, 178–186. [Google Scholar] [CrossRef]
- Pérez, E.; Famá, L.; Pardo, S.; Abad, M.; Bernal, C. Tensile and Fracture Behaviour of PP/Wood Flour Composites. Compos. Part B Eng. 2012, 43, 2795–2800. [Google Scholar] [CrossRef]
- Plumlee, K.; Schwartz, C.J. Improved Wear Resistance of Orthopaedic UHMWPE by Reinforcement with Zirconium Particles. Wear 2009, 267, 710–717. [Google Scholar] [CrossRef]
- Sa’ude, N.; Masood, S.; Nikzad, M.; Ibrahim, M.; Ibrahim, M. Dynamic Mechanical Properties of Copper-ABS Composites for FDM Feedstock. Int. J. Eng. Res. Appl. 2013, 3, 1257–1263. [Google Scholar]
- Gore, P.M.; Zachariah, S.; Gupta, P.; Balasubramanian, K. Multifunctional Nano-Engineered and Bio-Mimicking Smart Superhydrophobic Reticulated ABS/Fumed Silica Composite Thin Films with Heat-Sinking Applications. RSC Adv. 2016, 6, 105180–105191. [Google Scholar] [CrossRef]
- Bandeira, L.C.; de Campos, B.M.; Ciuffi, K.J.; Nassar, E.J.; Silva, J.V.; Oliveira, M.F.; Maia, I.A. Calcium Phosphate Coatings by Sol-Gel on Acrylonitrile-Butadiene-Styrene Substrate. J. Braz. Chem. Soc. 2017, 28, 943–949. [Google Scholar] [CrossRef]
- Azerag, B.; Azdast, T.; Doniavi, A.; Shishavan, S.M.; Lee, R.E. Structural Properties of Batch Foamed Acrylonitrile Butadiene Styrene/Nanoclay Nanocomposites. Int. J. Mech. Mater. Eng. 2015, 10, 19. [Google Scholar] [CrossRef]
- Janković, B.; Dodevski, V.; Stojmenović, M.; Krstić, S.; Popović, J. Characterization Analysis of Raw and Pyrolyzed Plane Tree Seed (Platanus Orientalis L.) Samples for Its Application in Carbon Capture and Storage (CCS) Technology. J. Therm. Anal. Calorim. 2018, 133, 465–480. [Google Scholar] [CrossRef]
- Jeong, S.H.; Yeo, S.Y.; Yi, S.C. The Effect of Filler Particle Size on the Antibacterial Properties of Compounded Polymer/Silver Fibers. J. Mater. Sci. 2005, 40, 5407–5411. [Google Scholar] [CrossRef]
- Ben Difallah, B.; Kharrat, M.; Dammak, M.; Monteil, G. Mechanical and Tribological Response of ABS Polymer Matrix Filled with Graphite Powder. Mater. Des. 2012, 34, 782–787. [Google Scholar] [CrossRef]
- Keshavamurthy, R.; Tambrallimath, V.; Badari, A.; Krishna, R.A.; Kumar, G.; Jeevan, M. Friction and Wear Behaviour of Copper Reinforced Acrylonitrile Butadiene Styrene Based Polymer Composite Developed by Fused Deposition Modelling Process. FME Trans. 2020, 48, 543–550. [Google Scholar] [CrossRef]
- He, J.; Zhang, L.; Li, C. Thermal Conductivity and Tribological Properties of POM-Cu Composites. Polym. Eng. Sci. 2010, 50, 2153–2159. [Google Scholar] [CrossRef]
- Sun, L.-H.; Yang, Z.-G.; Li, X.-H. Study on the Friction and Wear Behavior of POM/Al2O3 Nanocomposites. Wear 2008, 264, 693–700. [Google Scholar] [CrossRef]
- Bahadur, S.; Gong, D.; Anderegg, J. The Role of Copper Compounds as Fillers in Transfer Film Formation and Wear of Nylon. Wear 1992, 154, 207–223. [Google Scholar] [CrossRef]
- Dasari, A.; Yu, Z.-Z.; Mai, Y.-W. Fundamental Aspects and Recent Progress on Wear/Scratch Damage in Polymer Nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 31–80. [Google Scholar] [CrossRef]
- Chen, J.; Cao, Y.; Li, H. An Investigation on Wear Mechanism of POM/LLDPE Blends. J. Appl. Polym. Sci. 2006, 101, 48–53. [Google Scholar] [CrossRef]
Material | Heating Rate (°C/min) | Heat Flow (W/g) | Tg (°C) |
---|---|---|---|
ABS Pure | 10 | −0.339 | 103.44 |
5wt% Copper | 10 | −0.322 | 106.70 |
10wt% Copper | 10 | −0.292 | 105.15 |
15wt% Copper | 10 | −0.259 | 105.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akrout, M.; Ben Difallah, B.; Kharrat, M.; Dammak, M.; Pereira, A.; Oliveira, F.J.; Duarte, I. On the Structural, Thermal, Micromechanical and Tribological Characterizations of Cu-Filled Acrylonitrile Butadiene Styrene Micro-Composites. Materials 2023, 16, 6428. https://doi.org/10.3390/ma16196428
Akrout M, Ben Difallah B, Kharrat M, Dammak M, Pereira A, Oliveira FJ, Duarte I. On the Structural, Thermal, Micromechanical and Tribological Characterizations of Cu-Filled Acrylonitrile Butadiene Styrene Micro-Composites. Materials. 2023; 16(19):6428. https://doi.org/10.3390/ma16196428
Chicago/Turabian StyleAkrout, Mabrouka, Basma Ben Difallah, Mohamed Kharrat, Maher Dammak, António Pereira, Filipe J. Oliveira, and Isabel Duarte. 2023. "On the Structural, Thermal, Micromechanical and Tribological Characterizations of Cu-Filled Acrylonitrile Butadiene Styrene Micro-Composites" Materials 16, no. 19: 6428. https://doi.org/10.3390/ma16196428
APA StyleAkrout, M., Ben Difallah, B., Kharrat, M., Dammak, M., Pereira, A., Oliveira, F. J., & Duarte, I. (2023). On the Structural, Thermal, Micromechanical and Tribological Characterizations of Cu-Filled Acrylonitrile Butadiene Styrene Micro-Composites. Materials, 16(19), 6428. https://doi.org/10.3390/ma16196428