Strong Magneto-Optical Kerr Effects in Ni-Doped ZnO Nanolaminate Structures Obtained by Atomic Layer Deposition
Abstract
:1. Introduction
2. Experimental Details
2.1. The Atomic Layer Deposition Process: Nanolaminate ALD Protocol
2.2. Magneto-Optical Kerr Magnetometry
2.3. XPS, XRD and Spectroscopic Ellipsometry Experimental Details
3. Results, Analysis and Discussion
3.1. Structural Characterization via XRD Analysis
3.2. Chemical Composition: XPS Analysis
3.3. Magneto-Optical Kerr Effect Microscopy and Statistics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cibert, J.; Scalbert, D. Diluted Magnetic Semiconductors: Basic Physics and Optical Properties. In Spin Physics in Semiconductors; Springer: Berlin/Heidelberg, Germany, 2008; pp. 389–431. [Google Scholar] [CrossRef]
- Pan, F.; Song, C.; Liu, X.J.; Yang, Y.C.; Zeng, F. Ferromagnetism and possible application in spintronics of transition-metal-doped ZnO films. Mater. Sci. Eng. R Rep. 2008, 62, 1–35. [Google Scholar] [CrossRef]
- Seshadri, R. Zinc oxide-based diluted magnetic semiconductors. Curr. Opin. Solid State Mater. Sci. 2005, 9, 1–7. [Google Scholar] [CrossRef]
- Özgür, Ü.; Alivov, Y.I.; Liu, C.; Teke, A.; Reshchikov, M.A.; Doǧan, S.; Avrutin, V.; Cho, S.J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301. [Google Scholar] [CrossRef]
- Rana, A.K.; Kumar, Y.; Rajput, P.; Jha, S.N.; Bhattacharyya, D.; Shirage, P.M. Search for Origin of Room Temperature Ferromagnetism Properties in Ni-Doped ZnO Nanostructure. ACS Appl. Mater. Interfaces 2017, 9, 7691–7700. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, E.; Ramanujan, R.V.; Chen, J. Effects of rapid thermal annealing on structural, magnetic and optical properties of Ni-doped ZnO thin films. Curr. Appl. Phys. 2012, 12, 834–840. [Google Scholar] [CrossRef]
- Saravanan, R.; Santhi, K.; Sivakumar, N.; Narayanan, V.; Stephen, A. Synthesis and characterization of ZnO and Ni doped ZnO nanorods by thermal decomposition method for spintronics application. Mater. Charact. 2012, 67, 10–16. [Google Scholar] [CrossRef]
- Fabbiyola, S.; Sailaja, V.; Kennedy, L.J.; Bououdina, M.; Judith Vijaya, J. Optical and magnetic properties of Ni-doped ZnO nanoparticles. J. Alloys Compd. 2017, 694, 522–531. [Google Scholar] [CrossRef]
- Neamtu, J.; Volmer, M. The influence of doping with transition metal ions on the structure and magnetic properties of zinc oxide thin films. Sci. World J. 2014, 2014, 265969. [Google Scholar] [CrossRef]
- Ocaya, R.O.; Orman, Y.; Al-Sehemi, A.G.; Dere, A.; Al-Ghamdi, A.A.; Yakuphanoğlu, F. Bias and illumination-dependent room temperature negative differential conductance in Ni-doped ZnO/p-Si Schottky photodiodes for quantum optics applications. Heliyon 2023, 9, e16269. [Google Scholar] [CrossRef]
- Aboud, A.A.; Bukhari, Z.; Al-Ahmadi, A.N. Enhancement of UV detection properties of ZnO thin films via Ni doping. Phys. Scr. 2023, 98, 065938. [Google Scholar] [CrossRef]
- Moorthy, K.; Inbanathan, S.S.R.; Gopinathan, C.; Lalla, N.P.; Alghamdi, A.A.; Kumar, R.; Rani Rosaline, D.; Umar, A. Ni-Doped ZnO Thin Films: Deposition, Characterization and Photocatalytic Applications. J. Nanosci. Nanotechnol. 2021, 21, 1560–1569. [Google Scholar] [CrossRef] [PubMed]
- Zyoud, S.H.; Ganesh, V.; Che Abdullah, C.A.; Yahia, I.S.; Zyoud, A.H.; Abdelkader, A.F.I.; Daher, M.G.; Nasor, M.; Shahwan, M.; Zahran, H.Y.; et al. Facile Synthesis of Ni-Doped ZnO Nanostructures via Laser-Assisted Chemical Bath Synthesis with High and Durable Photocatalytic Activity. Crystals 2023, 13, 1087. [Google Scholar] [CrossRef]
- Ghosh, S.S.; Choubey, C.; Sil, A. Photocatalytic response of Fe, Co, Ni doped ZnO based diluted magnetic semiconductors for spintronics applications. Superlattices Microstruct. 2019, 125, 271–280. [Google Scholar] [CrossRef]
- Lokhande, S.D.; Awale, M.B.; Umadevi, G.; Mote, V.D. Effect of Ni doping on structural, optical and gas sensing properties of ZnO films for the development of acetone sensor devices. Mater. Chem. Phys. 2023, 301, 127667. [Google Scholar] [CrossRef]
- Zhu, B.B.; Chen, C.; Yao, Z.C.; Chen, J.Y.; Jia, C.; Wang, Z.H.; Tian, R.M.; Tao, L.; Xue, F.; Hng, H.H. Multiple doped ZnO with enhanced thermoelectric properties. J. Eur. Ceram. Soc. 2021, 41, 4182–4188. [Google Scholar] [CrossRef]
- Wakano, T.; Fujimura, N.; Morinaga, Y.; Abe, N.; Ashida, A.; Ito, T. Magnetic and magneto-transport properties of ZnO:Ni films. Phys. E Low-Dimens. Syst. Nanostructures 2001, 10, 260–264. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Kaur, B.; Singh, J.P.; Kumar, M.; Lee, H.H.; Kumar, P.; Meena, R.C.; Asokan, K.; Hwa Chae, K.; Goyal, N.; et al. Role of low energy transition metal ions in interface formation in ZnO thin films and their effect on magnetic properties for spintronic applications. Appl. Surf. Sci. 2019, 479, 1021–1028. [Google Scholar] [CrossRef]
- Snure, M.; Kumar, D.; Tiwari, A. Ferromagnetism in Ni-doped ZnO films: Extrinsic or intrinsic? Appl. Phys. Lett. 2009, 94, 10. [Google Scholar] [CrossRef]
- Ando, K.; Saito, H.; Jin, Z.; Fukumura, T.; Kawasaki, M.; Matsumoto, Y.; Koinuma, H. Magneto-optical properties of ZnO-based diluted magnetic semiconductors. J. Appl. Phys. 2001, 89, 7284–7286. [Google Scholar] [CrossRef]
- Fukuma, Y.; Asada, H.; Yamamoto, J.; Odawara, F.; Koyanagi, T. Large magnetic circular dichroism of Co clusters in Co-doped ZnO. Appl. Phys. Lett. 2008, 93, 142510. [Google Scholar] [CrossRef]
- Varvaro, G.; Di Trolio, A.; Polimeni, A.; Gabbani, A.; Pineider, F.; De Julián Fernández, C.; Barucca, G.; Mengucci, P.; Amore Bonapasta, A.; Testa, A.M. Giant magneto-optical response in H + irradiated Zn1−xCoxO thin films. J. Mater. Chem. C 2018, 7, 78–85. [Google Scholar] [CrossRef]
- Stolyarchuk, I.; Kuzyk, O.; Dan’kiv, O.; Dziedzic, A.; Kleto, G.; Stolyarchuk, A.; Popovych, A.; Hadzaman, I. Growth of Zn1−xNixO Thin Films and Their Structural, Optical and Magneto-Optical Properties. Coatings 2023, 13, 601. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Yan, S.S.; Liu, Y.H.; Ren, M.J.; Fang, Y.; Chen, Y.X.; Liu, G.L.; Mei, L.M.; Liu, J.P.; Qiu, J.H.; et al. Magneto-optical Kerr rotation enhancement in Co–ZnO inhomogeneous magnetic semiconductor. Appl. Phys. Lett. 2006, 89, 042501. [Google Scholar] [CrossRef]
- Di Trolio, A.; Polichetti, M.; Polimeni, A.; Testa, A.M. Local magneto-optical response of H+ irradiated Zn1−xCoxO thin films. Eur. Phys. J. Spec. Top. 2019, 228, 683–687. [Google Scholar] [CrossRef]
- Lan, T.; Ding, B.; Liu, B. Magneto-optic effect of two-dimensional materials and related applications. Nano Sel. 2020, 1, 298–310. [Google Scholar] [CrossRef]
- Qiu, Z.Q.; Bader, S.D. Surface magneto-optic Kerr effect. Rev. Sci. Instrum. 2000, 71, 1243. [Google Scholar] [CrossRef]
- Loughran, T.H.J.; Keatley, P.S.; Hendry, E.; Barnes, W.L.; Hicken, R.J. Enhancing the magneto-optical Kerr effect through the use of a plasmonic antenna. Opt. Express 2018, 26, 4738–4750. [Google Scholar] [CrossRef]
- Kim, D.; Oh, Y.W.; Kim, J.U.; Lee, S.; Baucour, A.; Shin, J.; Kim, K.J.; Park, B.G.; Seo, M.K. Extreme anti-reflection enhanced magneto-optic Kerr effect microscopy. Nat. Commun. 2020, 11, 5937. [Google Scholar] [CrossRef]
- Huang, D.; Lattery, D.; Wang, X. Materials Engineering Enabled by Time-Resolved Magneto-Optical Kerr Effect for Spintronic Applications. ACS Appl. Electron. Mater. 2021, 3, 119–127. [Google Scholar] [CrossRef]
- Cheskis, D. Magneto-Optical Tools to Study Effects in Dirac and Weyl Semimetals. Symmetry 2020, 12, 1412. [Google Scholar] [CrossRef]
- Cheong, S.W.; Fiebig, M.; Wu, W.; Chapon, L.; Kiryukhin, V. Seeing is believing: Visualization of antiferromagnetic domains. npj Quantum Mater. 2020, 5, 3. [Google Scholar] [CrossRef]
- Bhowmick, T.K.; De, A.; Lake, R.K. High figure of merit magneto-optics from interfacial skyrmions on topological insulators. Phys. Rev. B 2018, 98, 024424. [Google Scholar] [CrossRef]
- Gao, W.; Li, Z. ZnO thin films produced by magnetron sputtering. Ceram. Int. 2004, 30, 1155–1159. [Google Scholar] [CrossRef]
- Azeem, W.; Luo, C.Q.; Xu, C.; Zhou, S.; Wagner, A.; Butterling, M.; Younas, M.; Ling, F.C.C. Ferromagnetism in undoped ZnO grown by pulsed laser deposition. Mater. Res. Express. 2020, 7, 056102. [Google Scholar] [CrossRef]
- Hamelmann, F.U. Thin film zinc oxide deposited by CVD and PVD. J. Phys. Conf. Ser. 2016, 764, 012001. [Google Scholar] [CrossRef]
- Guziewicz, E.; Godlewski, M.; Wachnicki, L.; Krajewski, T.A.; Luka, G.; Gieraltowska, S.; Jakiela, R.; Stonert, A.; Lisowski, W.; Krawczyk, M.; et al. ALD grown zinc oxide with controllable electrical properties. Semicond. Sci. Technol. 2012, 27, 074011. [Google Scholar] [CrossRef]
- Guziewicz, E.; Godlewski, M.; Krajewski, T.; Wachnicki, Ł.; Szczepanik, A.; Kopalko, K.; Wójcik-Godowska, A.; Przeździecka, E.; Paszkowicz, W.; Łusakowska, E.; et al. ZnO grown by atomic layer deposition: A material for transparent electronics and organic heterojunctions. J. Appl. Phys. 2009, 105, 122413. [Google Scholar] [CrossRef]
- Tynell, T.; Karppinen, M. Atomic layer deposition of ZnO: A review. Semicond. Sci. Technol. 2014, 29, 043001. [Google Scholar] [CrossRef]
- Paskaleva, A.; Blagoev, B.S.; Terziyska, P.T.; Mehandzhiev, V.; Tzvetkov, P.; Kovacheva, D.; Avramova, I.; Spassov, D.; Ivanova, T.; Gesheva, K. Structural, morphological and optical properties of atomic layer deposited transition metal (Co, Ni or Fe)- doped ZnO layers. J. Mater. Sci. Mater. Electron. 2021, 32, 7162–7175. [Google Scholar] [CrossRef]
- Buchkov, K.; Galluzzi, A.; Blagoev, B.; Paskaleva, A.; Terziyska, P.; Stanchev, T.; Mehandzhiev, V.; Tzvetkov, P.; Kovacheva, D.; Avramova, I.; et al. Magneto-optical characterization of ZnO/Ni nano-laminate obtained via Atomic Layer Deposition. J. Phys. Conf. Ser. 2021, 1762, 012041. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010, 257, 887–898. [Google Scholar] [CrossRef]
- Briggs, D. Handbook of X-ray Photoelectron Spectroscopy; Wiley: Hoboken, NJ, USA, 1981; Volume 3. [Google Scholar]
- Paskaleva, A.; Buchkov, K.; Galluzzi, A.; Spassov, D.; Blagoev, B.; Ivanov, T.; Mehandzhiev, V.; Avramova, I.A.; Terzyiska, P.; Tzvetkov, P.; et al. Magneto-Optical and Muliferroic Properties of Transition-Metal (Fe, Co, or Ni)-Doped ZnO Layers Deposited by ALD. ACS Omega 2022, 7, 43306–43315. [Google Scholar] [CrossRef] [PubMed]
- Mal, S.; Yang, T.-H.; Jin, C.; Nori, S.; Narayan, J.; Prater, J.T. d0 Ferromagnetism in undoped ZnO thin films: Effect of thickness, interface and oxygen annealing. Scr. Mater. 2011, 65, 1061–1064. [Google Scholar] [CrossRef]
- Verma, K.C. Diluted Magnetic Semiconductor ZnO: Magnetic Ordering with Transition Metal and Rare Earth Ions. In Magnetic Materials and Magnetic Levitation; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Jalbout, A.F.; Chen, H.; Whittenburg, S.L. Monte Carlo simulation on the indirect exchange interactions of Co-doped ZnO film. Appl. Phys. Lett. 2002, 81, 2217. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Venkatesan, M.; Fitzgerald, C.B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 2005, 4, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Higo, T.; Man, H.; Gopman, D.B.; Wu, L.; Koretsune, T.; Van ’T Erve, O.M.J.; Kabanov, Y.P.; Rees, D.; Li, Y.; Suzuki, M.T.; et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photonics 2018, 12, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Yamane, H.; Takeda, K.; Kobayashi, M. Magneto-Optical Enhancement and Chemical Sensing Applications of Perpendicular Magnetic CoPt/Ag Stacked Structures with a ZnO Intermediate Layer. Mater. Trans. 2016, 57, 892–897. [Google Scholar] [CrossRef]
- Mukherjee, A.; Ellis, C.T.; Arik, M.M.; Taheri, P.; Oliverio, E.; Fowler, P.; Tischler, J.G.; Liu, Y.; Glaser, E.R.; Myers-Ward, R.L.; et al. Giant magneto-optical Kerr enhancement from films on SiC due to the optical properties of the substrate. Phys. Rev. B 2019, 99, 085440. [Google Scholar] [CrossRef]
- Yamane, H.; Yasukawa, Y.; Kobayashi, M. Polar Kerr effect and perpendicular magnetic anisotropy in Fabry–Pérot cavity containing CoPt/AZO magneto-optical interference layer. J. Appl. Phys. 2021, 129, 203902. [Google Scholar] [CrossRef]
- Ohyama, R.; Koyanagi, T.; Matsubara, K. Magneto-optical Kerr effect of rf-sputtered PtMnSb thin films. J. Appl. Phys. 1987, 61, 2347–2352. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.; Ding, X.; Pernod, P.; Tiercelin, N.; Song, Y. Tunable Magneto-Optical Kerr Effects of Nanoporous Thin Films. Sci. Rep. 2017, 7, 2888. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Gao, J.L.; Xia, W.B.; Luo, X.J.; Tang, S.L.; Du, Y.W. Giant magneto-optical Kerr effect in HfO2/Co/HfO2/Al/silicon structure. J. Appl. Phys. 2013, 114, 064308. [Google Scholar] [CrossRef]
- Valds Aguilar, R.; Stier, A.V.; Liu, W.; Bilbro, L.S.; George, D.K.; Bansal, N.; Wu, L.; Cerne, J.; Markelz, A.G.; Oh, S.; et al. Terahertz response and colossal kerr rotation from the surface states of the topological insulator Bi2Se3. Phys. Rev. Lett. 2012, 108, 087403. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galluzzi, A.; Buchkov, K.; Blagoev, B.S.; Paskaleva, A.; Avramova, I.; Mehandhziev, V.; Tzvetkov, P.; Terziyska, P.; Kovacheva, D.; Polichetti, M. Strong Magneto-Optical Kerr Effects in Ni-Doped ZnO Nanolaminate Structures Obtained by Atomic Layer Deposition. Materials 2023, 16, 6547. https://doi.org/10.3390/ma16196547
Galluzzi A, Buchkov K, Blagoev BS, Paskaleva A, Avramova I, Mehandhziev V, Tzvetkov P, Terziyska P, Kovacheva D, Polichetti M. Strong Magneto-Optical Kerr Effects in Ni-Doped ZnO Nanolaminate Structures Obtained by Atomic Layer Deposition. Materials. 2023; 16(19):6547. https://doi.org/10.3390/ma16196547
Chicago/Turabian StyleGalluzzi, Armando, Krastyo Buchkov, Blagoy S. Blagoev, Albena Paskaleva, Ivalina Avramova, Vladimir Mehandhziev, Peter Tzvetkov, Penka Terziyska, Daniela Kovacheva, and Massimiliano Polichetti. 2023. "Strong Magneto-Optical Kerr Effects in Ni-Doped ZnO Nanolaminate Structures Obtained by Atomic Layer Deposition" Materials 16, no. 19: 6547. https://doi.org/10.3390/ma16196547
APA StyleGalluzzi, A., Buchkov, K., Blagoev, B. S., Paskaleva, A., Avramova, I., Mehandhziev, V., Tzvetkov, P., Terziyska, P., Kovacheva, D., & Polichetti, M. (2023). Strong Magneto-Optical Kerr Effects in Ni-Doped ZnO Nanolaminate Structures Obtained by Atomic Layer Deposition. Materials, 16(19), 6547. https://doi.org/10.3390/ma16196547