Carbon-Based Composites with Mixed Phosphate-Pyrophosphates with Improved Electrochemical Performance at Elevated Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
2.2. Methods
3. Results and Discussion
3.1. Structure and Morphology Characterization of NFPP/C and NFPP/rGO Composites
3.2. Sodium Storage Properties of NFPP/C and NFPP/rGO Composites
3.3. Lithium Storage Properties of NFPP/C and NFPP/rGO Composites
3.4. Ex Situ Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanz, F.; Parada, C.; Rojo, J.M.; Ruíz-Valero, C. Synthesis, structural characterization, magnetic properties, and ionic conductivity of Na4MII3(PO4)2(P2O7) (MII = Mn, Co, Ni). Chem. Mater. 2001, 13, 1334–1340. [Google Scholar] [CrossRef]
- Kim, H.; Park, I.; Seo, D.-H.; Lee, S.; Kim, S.-W.; Kwon, W.J.; Park, Y.-U.; Kim, C.S.; Jeon, S.; Kang, K. New iron-based mixed-polyanionc cathodes for lithium and sodium rechargeable batteries: Combined first principles calculations and experimental study. J. Am. Chem. Soc. 2012, 134, 10369–10372. [Google Scholar] [CrossRef] [PubMed]
- Nose, M.; Shiotani, S.; Nakayama, H.; Nobuhara, K.; Nakanishi, S.; Iba, H. Na4Co2.4Mn0.3Ni0.3(PO4)2P2O7: High potential and high capacity electrode material for sodium-ion batteries. Electrochem. Commun. 2013, 34, 266–269. [Google Scholar] [CrossRef]
- Kim, H.; Park, I.; Lee, S.; Kim, H.; Park, K.-Y.; Park, Y.-U.; Kim, H.; Kim, J.; Lim, H.-D.; Yoon, W.-S.; et al. Understanding the electrochemical mechanism of the new iron-based mixed-phosphate Na4Fe3(PO4)2(P2O7) in a Na rechargeable battery. Chem. Mater. 2013, 25, 3614–3622. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, Y.; Xu, M. A review on pyrophosphate framework cathode materials for sodium-ion batteries. J. Mater. Chem. A 2019, 7, 15006–15025. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Murugesan, C.; Sada, K.; Barpanda, P. Electrochemical insertion of potassium ions in Na4Fe3(PO4)2P2O7 mixed phosphate. J. Power Sources 2020, 480, 228794. [Google Scholar] [CrossRef]
- Shi, K.; Yang, W.; Wu, Q.; Yang, X.; Zhao, R.; She, Z.; Xie, Q.; Ruan, Y. Boosting the fast electrochemical kinetics of Na4Fe3(PO4)2(P2O7) via a 3D graphene network as a cathode material for potassium-ion batteries. New J. Chem. 2023, 47, 10153–10161. [Google Scholar] [CrossRef]
- Wood, S.M.; Eames, C.; Kendrick, E.; Islam, M.S. Sodium ion diffusion and voltage trends in phosphates Na4M3(PO4)2P2O7 (M=Fe, Mn, Co, Ni) for possible high-rate cathodes. J. Phys. Chem. C 2015, 119, 15935–15941. [Google Scholar] [CrossRef]
- Zhang, H.; Hasa, I.; Buchholz, D.; Qin, B.; Geige, D.; Jeong, S.; Kaiser, U.; Passerini, S. Exploring the Ni redox activity in polyanionic compounds as conceivable high potential cathodes for Na rechargeable batteries. NPG Asia Mater. 2017, 9, e370. [Google Scholar] [CrossRef]
- Pu, X.; Wang, H.; Yuan, T.; Cao, S.; Liu, S.; Xu, L.; Yang, H.; Ai, X.; Chen, Z.; Cao, Y. Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Mater. 2019, 22, 330–336. [Google Scholar] [CrossRef]
- Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S.; et al. NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 2019, 10, 1480. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ropero, A.J.; Zarrabeitia, M.; Reynaud, M.; Rojo, T.; Casas-Cabanas, M. Toward safe and sustainable batteries: Na4Fe3(PO4)2P2O7 as a low-cost cathode for rechargeable aqueous Na-ion batteries. J. Phys. Chem. C 2018, 122, 133–142. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Rambabu, A.; Murugesan, C.; Krupanidhi, S.B.; Barpanda, P. Iron-based mixed phosphate Na4Fe3(PO4)2P2O7 thin films for sodium-ion microbatteries. ACS Omega 2020, 5, 7219–7224. [Google Scholar] [CrossRef] [PubMed]
- Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yanga, H.; Cao, Y. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 2019, 56, 160–168. [Google Scholar] [CrossRef]
- Boyadzhieva, T.J.; Koleva, V.G.; Kukeva, R.R.; Stoyanova, R.K. Mechanochemically desodiated Na4Fe3(PO4)2P2O7 as a lithium and sodium storage material. ACS Appl. Energy Mater. 2021, 4, 7182–7189. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, C.; Chen, L.; Fu, C.; Zeng, Y.; Wang, Q.; Cao, Y.; Chen, Z. “One stone two birds” design for hollow spherical Na4Fe3(PO4)2P2O7/C cathode enabled high-performance sodium-ion batteries from iron rust. EcoMat 2023, e12393. [Google Scholar] [CrossRef]
- Kosova, N.V.; Belotserkovsky, V.A. Sodium and mixed sodium/lithium iron ortho-pyrophosphates: Synthesis, structure and electrochemical properties. Electrochim. Acta 2018, 278, 182–195. [Google Scholar] [CrossRef]
- Kosova, N.V.; Shindrov, A.A. Effect of mixed Li+/Na+-ion electrolyte on electrochemical performance of Na4Fe3(PO4)2P2O7 in hybrid batteries. Batteries 2019, 5, 39. [Google Scholar] [CrossRef]
- Kumar, P.R.; Yahia, H.B.; Belharouak, I.; Sougrati, M.T.; Passerini, S.; Amin, R.; Essehli, R. Electrochemical investigations of high voltage Na4Ni3(PO4)2P2O7 cathode for sodium ion batteries. J. Solid State Electrochem. 2020, 24, 17–24. [Google Scholar] [CrossRef]
- Jiang, X.; Du, P.; Mi, K.; Hu, F.; Wang, D.; Zheng, X. Hierarchical hollow microspheres Na3V2(PO4)2F3@C@rGO as high-performance cathode materials for sodium ion batteries. New J. Chem. 2020, 44, 12985–12992. [Google Scholar]
- Li, S.-F.; Hou, X.-K.; Gu, Z.-Y.; Meng, Y.-F.; Zhao, C.-D.; Zhang, H.-X.; Wu, X.-L. Sponge-like NaFe2(PO4)(SO4)2 as a high-performance cathode material for sodium-ion batteries. New J. Chem. 2021, 45, 4854–4859. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, C.; Liu, Y.; Xia, X.; Zhao, D.; Cao, Y.; Yang, H.; Zhang, J.; Lu, J.; Xia, Y. A green and scalable synthesis of Na3Fe2(PO4)P2O7/rGO cathode for high-rate and long-life sodium-ion batteries. ACS Energy Lett. 2020, 5, 3788–3796. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Z.; Zhang, H.; Dong, C.; Ding, Y.; Cao, Y.; Chen, Z. A green and scalable synthesis of Na3Fe2(PO4)P2O7/rGO cathode for high-rate and long-life sodium-ion batteries. Small Methods 2021, 5, 2100372. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Zhong, G.; Yang, Y. Sol-gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for Sodium ion batteries and new insights into microstructural evolution during sodium extraction. J. Power Sources 2016, 327, 666–674. [Google Scholar] [CrossRef]
- Koleva, V.; Zhecheva, E.; Stoyanova, R. A new phosphate-formate precursor method for the preparation of carbon coated nano-crystalline LiFePO4. J. Alloys Compd. 2009, 476, 950–957. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Eklund, C.; Molden, J.M.; Jishi, R.A. Vibrational modes of carbon nanotubes: Spectroscopy and theory. Carbon 1995, 33, 959–972. [Google Scholar] [CrossRef]
- Strankowski, M.; WƗodarczyk, D.; Piszczyk, A.; Strankowska, J. Polyurethane nanocomposites containing reduced graphene oxide, FTIR, Raman, and XRD studies. J. Spectrosc. 2016, 2016, 7520741. [Google Scholar] [CrossRef]
- Coluccia, S.; Marchese, L.; Martra, G. Characterisation of microporous and mesoporous materials by the adsorption of molecular probes: FTIR and UV–Vis studies. Microporous Mesoporous Mater. 1999, 30, 43–56. [Google Scholar] [CrossRef]
- Li, Y.; Ye, K.; Cheng, K.; Cao, D.; Pan, Y.; Kong, S.; Zhang, X.; Wang, G. Anchoring CuO nanoparticles on nitrogen-doped reduced graphene oxide nanosheets as electrode material for supercapacitors. J. Electroanal. Chem. 2014, 727, 154–162. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef]
- Boyadzhieva, T.; Koleva, V.; Zhecheva, E.; Nihtianova, D.; Mihaylov, L.; Stoyanova, R. Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black. RSC Adv. 2015, 5, 87694–87705. [Google Scholar] [CrossRef]
- Boyadzhieva, T.; Koleva, V.; Kukeva, R.; Nihtianova, D.; Harizanova, S.; Stoyanova, R. Storage performance of Mg2+ substituted NaMnPO4 with an olivine structure. RSC Adv. 2020, 10, 29051–29060. [Google Scholar] [CrossRef] [PubMed]
- Ackermann, A.C.; Carosella, S.; Rettenmayr, M.; Fox, B.L.; Middendorf, P. Rheology, dispersion, and cure kinetics of epoxy filled with amine- and non-functionalized reduced graphene oxide for composite manufacturing. J. Appl. Polym. Sci. 2022, 139, e51664. [Google Scholar] [CrossRef]
- Broekhoff, J.C.P. Mesopore determination from nitrogen sorption isotherms: Fundamentals, scope, limitations. Stud. Surf. Sci. Catal. 1979, 3, 663–684. [Google Scholar]
- Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Gauden, P.A.; Terzyk, A.P.; Jaroniec, M.; Kowalczyk, P. Bimodal pore size distributions for carbons: Experimental results and computational studies. J. Colloid Interface Sci. 2007, 310, 205–216. [Google Scholar] [CrossRef]
- Ali, G.; Mehmood, A.; Yong Ha, H.; Kim, J.; Chung, K.Y. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Sci. Rep. 2017, 7, 40910. [Google Scholar] [CrossRef]
- Lee, S.W.; Yabuuchi, N.; Gallant, B.M.; Chen, S.; Kim, B.-S.; Hammond, P.T.; Shao-Horn, Y. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotechnol. 2010, 5, 531–537. [Google Scholar] [CrossRef]
Description | a, Å | b, Å | c, Å | V, Å3 |
---|---|---|---|---|
NFPP | 18.1018(6) | 6.5331(2) | 10.6452(3) | 1258.93(7) |
NFPP/C | 18.0863(8) | 6.5390(3) | 10.6461(4) | 1259.09(10) |
NFPP/rGO | 18.0854(6) | 6.5345(6) | 10.6467(7) | 1259.95(12) |
Electrodes cycled in NaPF6/PC electrolyte, analyzed in discharged state (1.5 V) | ||||
NFPP/C (200 cycles) | 18.0711 | 6.5340 | 10.6626 | 1259.02 |
NFPP/rGO (200 cycles) | 18.0838 | 6.5344 | 10.6428 | 1257.63 |
Literature data for NFPP/C and NFPP/rGO obtained by different methods | ||||
NFPP/C [10]: template method | 18.0604(6) | 6.5354(3) | 10.6533(7) | 1257.446(6) |
NFPP/C [24]: sol-gel | 18.1953(5) | 6.5639(3) | 10.6965(4) | 1277.50 |
NFPP/C [16]: spray-drying | 17.938 | 6.507 | 10.623 | 1239.94 |
NFPP/C [6]: solution combustion | 18.038(4) | 6.5429(13) | 10.6744(17) | 1259.8(5) |
NFPP/rGO [14]: spray-drying | 17.9675 | 6.5402 | 10.6672 | 1253.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harizanova, S.; Tushev, T.; Koleva, V.; Stoyanova, R. Carbon-Based Composites with Mixed Phosphate-Pyrophosphates with Improved Electrochemical Performance at Elevated Temperature. Materials 2023, 16, 6546. https://doi.org/10.3390/ma16196546
Harizanova S, Tushev T, Koleva V, Stoyanova R. Carbon-Based Composites with Mixed Phosphate-Pyrophosphates with Improved Electrochemical Performance at Elevated Temperature. Materials. 2023; 16(19):6546. https://doi.org/10.3390/ma16196546
Chicago/Turabian StyleHarizanova, Sonya, Trajche Tushev, Violeta Koleva, and Radostina Stoyanova. 2023. "Carbon-Based Composites with Mixed Phosphate-Pyrophosphates with Improved Electrochemical Performance at Elevated Temperature" Materials 16, no. 19: 6546. https://doi.org/10.3390/ma16196546
APA StyleHarizanova, S., Tushev, T., Koleva, V., & Stoyanova, R. (2023). Carbon-Based Composites with Mixed Phosphate-Pyrophosphates with Improved Electrochemical Performance at Elevated Temperature. Materials, 16(19), 6546. https://doi.org/10.3390/ma16196546