Numerical Study on Effect of Contact and Interfacial Resistance on Thermal Conductivity of Dispersed Composites
Abstract
:1. Introduction
2. Numerical Analyses
2.1. Constitutive Equations
2.2. Microstructure of Materials
2.3. Finite Element Models
2.4. Evaluation of Effective Thermal Conductivities
3. Results and Discussions
3.1. Effect of Contact between Fillers
3.2. Effect of Interfacial Thermal Resistance
4. Study Limitations
5. Conclusions
- Contact between fillers depending on the shape and configuration of the fillers had a more significant influence on the improvement in the effective thermal conductivity than the influence of an increase in volumetric fraction. The contact demonstrated the improvement that made the effective thermal conductivity more than double.
- The effective thermal conductivity decreased by approximately 10% due to interfacial thermal resistance in the order of 10−7 m2 K/W which was a realistic value for the interface between dissimilar materials even when a surface treatment of the interface was perfect.
- Interfacial thermal resistance that was higher than 10−7 m2 K/W had a significant influence on effective thermal conductivity. Interfacial thermal resistance must be lower than 10−4 m2 K/W to gain an improvement in the effective conductivity due to the compounding of fillers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Kc | Ratio of thermal conductivity of the composites to that of the matrix material |
Kf | Ratio of thermal conductivity of fillers to that of the matrix material |
vf | Volume fraction of fillers |
w | Shape parameter for meredith’s model |
q | Vector form of heat flux |
κ | Matrix form of thermal conductivity |
T | Temperature |
L | Size of unit cell model |
θ, φ | Angles in base Cartesian coordinate system |
λ | Interfacial thermal resistance |
H | Interfacial thermal conductivity |
Subscripts | |
x0, x1 | Reference values on x axis |
y0, y1 | Reference values on y axis |
References
- Fu, Y.X.; He, Z.X.; Mo, D.C.; Lu, S.S. Thermal conductivity enhancement with different fillers for epoxy resin adhesives. Appl. Therm. Eng. 2014, 66, 493–498. [Google Scholar] [CrossRef]
- Ye, C.M.; Shentu, B.Q.; Weng, Z.X. Thermal conductivity of high density polyethylene filled with graphite. J. Appl. Polym. Sci. 2006, 101, 3806–3810. [Google Scholar] [CrossRef]
- He, L.; Ye, Z.; Zeng, J.; Yang, X.; Li, D.; Yang, X.; Chen, Y.; Huang, Y. Enhancement in electrical and thermal properties of LDPE with Al2O3 and h-BN as nanofiller. Materials 2022, 15, 2844. [Google Scholar] [CrossRef] [PubMed]
- Zain-Ul-Abdein, M.; Raza, K.; Khalid, F.A.; Mabrouki, T. Numerical investigation of the effect of interfacial thermal resistance upon the thermal conductivity of copper/diamond composites. Mater. Des. 2015, 86, 248–258. [Google Scholar] [CrossRef]
- Koosha, N.; Karimi-Sabet, J.; Moosavinn, M.A.; Amini, Y. Improvement of synthesized graphene structure through various solvent liquids at low temperatures by chemical vapor deposition method. Mater. Sci. Eng. B 2021, 274, 115458. [Google Scholar] [CrossRef]
- Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of thermal conductivity in composites: Mechanisms, parameters and theory. Progr. Polym. Sci. 2016, 61, 1–28. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism, 3rd ed.; Claredron Press: Oxford, UK, 1904; Volume 1, pp. 360–365. [Google Scholar]
- Bruggeman, D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Meredith, R.E. Studies on the Conductivities of Dispersions. Ph.D. Thesis, Lawrence Radiation Laboratory, University of California, Los Angeles, CA, USA, 1959. [Google Scholar] [CrossRef] [Green Version]
- Bahrami, M.; Yovanovich, M.M.; Culham, J.R. Effective thermal conductivity of rough spherical packed beds. Int. J. Heat Mass Transf. 2006, 49, 3691–3701. [Google Scholar] [CrossRef]
- Kortschot, M.T.; Woodhams, R.T. Computer simulation of the electrical conductivity of polymer composites containing metallic fillers. Polym. Compos. 1988, 9, 60–71. [Google Scholar] [CrossRef]
- Ramani, K.; Vaidyanathan, A. Finite element analysis of effective thermal conductivity of filled polymeric composites. J. Compos. Mater. 1995, 29, 1725–1740. [Google Scholar] [CrossRef]
- Buonanno, G.; Carotenuto, A. The effective thermal conductivity of packed beds of spheres for a finite contact area. Numer. Heat Transf. A Appl. 2000, 37, 343–357. [Google Scholar]
- Matt, C.F.; Cruz, M.E. Effective thermal conductivity of composite materials with 3-D microstructures and interfacial thermal resistance. Numer. Heat Transf. A Appl. 2007, 53, 577–604. [Google Scholar] [CrossRef]
- Haddadi, M.; Agoudjil, B.; Boudenne, A.; Garnier, B. Analytical and numerical investigation on effective thermal conductivity of polymer composites filled with conductive hollow particle. Int. J. Thermophys. 2013, 34, 101–112. [Google Scholar] [CrossRef]
- Pietrak, K.; Wisniewski, T.S. A review of models for effective thermal conductivity of composite materials. J. Pow. Technol. 2015, 95, 14–24. [Google Scholar]
- Yvonnet, J.; He, Q.C.; Toulemonde, C. Numerical modelling of the effective conductivities of composites with arbitrarily shaped inclusions and highly conducting interface. Compos. Sci. Technol. 2008, 68, 2818–2825. [Google Scholar] [CrossRef] [Green Version]
- Muliana, A.H.; Kim, J.S. A two-scale homogenization framework for nonlinear effective thermal conductivity of laminated composites. Acta Mech. 2010, 212, 319–347. [Google Scholar] [CrossRef]
- Moumen, A.E.; Kanit, T.; Imad, A.; Minor, H.E. Computational thermal conductivity in porous materials using homogenization techniques: Numerical and statistical approaches. Comput. Mater. Sci. 2015, 97, 148–158. [Google Scholar] [CrossRef]
- Fang, W.; Gou, J.; Zhang, H.; Kang, Q.; Tao, W.Q. Numerical predictions of the effective thermal conductivity for needled C/C-SiC composite materials. Numer. Heat Transf. A Appl. 2016, 70, 1101–1117. [Google Scholar] [CrossRef]
- Koos, G.L.; Every, A.G.; Northrop, G.A.; Wolfe, J.P. Critical-cone channeling of thermal phonons at a sapphire-metal interface. Phys. Rev. Lett. 1983, 51, 276–280. [Google Scholar] [CrossRef]
- Eddison, C.G.; Wybourne, M.N. Acoustic phonon scattering at sapphire surfaces coated with epitaxial silicon. J. Phys. C Solid State Phys. 1985, 18, 5225–5234. [Google Scholar] [CrossRef]
- Swartz, E.T.; Pohl, R.O. Thermal boundary resistance. Rev. Mod. Phys. 1989, 61, 605–668. [Google Scholar] [CrossRef]
- Bhatt, H.; Donaldson, K.Y.; Hasselman, D.P.H. Role of the interfacial thermal barrier in the effective thermal diffusivity/conductivity of SiC-fiber-reinforced reaction-bonded silicon nitride. J. Am. Ceram. Soc. 1990, 73, 312–316. [Google Scholar] [CrossRef]
- Prasher, R. Thermal interface materials: Historical perspective, status, and future directions. Proc. IEEE 2006, 94, 1571–1586. [Google Scholar] [CrossRef]
- Kapitza, P.L. The study of heat transfer in helium II. J. Exp. Theor. Phys. 1941, 4, 181–220. [Google Scholar]
- Weis, O. The solid-solid interface in thermal phonon radiation. J. Phys. Colloq. 1972, 11, C4–C49. [Google Scholar]
- Khalatnikov, I.M. Theory of diffusion and thermal conductvity for dilute solutions of He3 in helium II. J. Exp. Theor. Phys. 1959, 9, 905–919. [Google Scholar]
- Swartz, E.T.; Pohl, R.O. Thermal boundary resistance from 0.5–300K. In Phonon Scattering in Condensed Matter V; Springer: New York, NY, USA, 1987; pp. 228–230. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Shimono, M.; Tanaka, Y.; Yamazaki, M. Computation of Interfacial thermal resistance by phonon diffuse mismatch model. Mater. Trans. 2007, 48, 2349–2352. [Google Scholar] [CrossRef] [Green Version]
- Landauer, R. Electrical transport and optical properties of inhomogeneous media. Proc. Amer. Inst. Phys. Conf. 1978, 40, 2. [Google Scholar]
- Reddy, J.N.; Gartling, D.K. The Finite Element Method in Heat Transfer and Fluid Dynamics, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 79–147. [Google Scholar]
- Kettle, S.F.A.; Norrby, L.J. The Wigner-Seitz unit cell. J. Chem. Educ. 1994, 71, 1003–1006. [Google Scholar] [CrossRef]
Properties | Fillers | Matrix |
---|---|---|
Thermal conductivity [W/(m·K)] | 250 | 0.2 |
Diameter [μm] | 50 | - |
Volume fraction [%] | BCC: 10, 40, 60, 68 1 FCC: 10, 40, 60, 68, 74 1 W-S Cell: 68, 74, 85 |
Volume Fraction [%] | Effective Thermal Conductivities [w/(m·K)] | |||
---|---|---|---|---|
FCC | Transformed FCC | BCC | Wigner–Seitz Cell | |
10 | 1.331 | 1.330 | 1.328 | - |
40 | 3.009 | 2.999 | 2.996 | - |
60 | 5.915 | 5.876 | 6.245 | - |
68 | - | - | 14.38 1 | 5.032 |
74 | 20.31 1 | 20.67 1 | - | 6.501 |
85 | - | - | - | 12.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondo, A.; Matsuura, H.; Ito, Y. Numerical Study on Effect of Contact and Interfacial Resistance on Thermal Conductivity of Dispersed Composites. Materials 2023, 16, 517. https://doi.org/10.3390/ma16020517
Kondo A, Matsuura H, Ito Y. Numerical Study on Effect of Contact and Interfacial Resistance on Thermal Conductivity of Dispersed Composites. Materials. 2023; 16(2):517. https://doi.org/10.3390/ma16020517
Chicago/Turabian StyleKondo, Atsushi, Hiroshi Matsuura, and Yoshiharu Ito. 2023. "Numerical Study on Effect of Contact and Interfacial Resistance on Thermal Conductivity of Dispersed Composites" Materials 16, no. 2: 517. https://doi.org/10.3390/ma16020517
APA StyleKondo, A., Matsuura, H., & Ito, Y. (2023). Numerical Study on Effect of Contact and Interfacial Resistance on Thermal Conductivity of Dispersed Composites. Materials, 16(2), 517. https://doi.org/10.3390/ma16020517