Removal of Brilliant Green Dye from Water Using Ficus benghalensis Tree Leaves as an Efficient Biosorbent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Preparation of Adsorbent
2.4. Preparation of Dye Solution
2.5. Determination of the Adsorption Efficiency of F. benghalensis Tree Parts
3. Results and Discussion
3.1. Comparison of Adsorption Performance of Different Sections of F. benghalensis Tree for BG Dye Removal
3.2. Effect of Contact Time on the Process of Adsorption
3.3. Effect of Adsorbent Dose (Amount of Leaves Powder) on the Adsorption of BG
3.4. Effect of pH on the Adsorption of Brilliant Green
3.5. Effect of Initial BG Dye Concentration on Its Adsorption
3.6. Comparison of Adsorption Efficiency of Ficus benghalensis Leaves Powder as an Adsorbent with Animal Charcoal and Silica Gel for BG Removal
3.7. Determination of Adsorption Performance of F. benghalensis Leaves Powder in Water Collected from Different Sources
3.8. Best-Fit Adsorption Isotherm for BG Removal by F. benghalensis Leaves Powder
3.8.1. Langmuir Isotherm Model
3.8.2. Freundlich Isotherm Model
3.9. Kinetics of BG Adsorption by F. benghalensis Leaves Powder
3.9.1. Pseudo-First-Order (PFO) Kinetic Model
3.9.2. Pseudo-Second-Order (PSO) Kinetic Model
3.10. Fourier Transform Infrared Spectroscopy of the Adsorbent before and after Adsorption
3.11. Scanning Electron Microscopy (SEM) of the Adsorbent before and after Adsorption
3.12. Mechanism of Adsorption of Brilliant Green Dye on F. benghalensis Leaves
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahlown, M.A.; Majeed, A. Water-resources situation in Pakistan: Challenges and future strategies. Water Resour. South 2003, 20, 33–45. [Google Scholar]
- Gul, S.; Gul, H.; Gul, M.; Khattak, R.; Rukh, G.; Khan, M.S.; Aouissi, H.A. Enhanced adsorption of rhodamine B on biomass of cypress/false cypress (chamaecyparis lawsoniana) fruit: Optimization and kinetic study. Water 2022, 14, 2987. [Google Scholar] [CrossRef]
- Seow, T.W.; Lim, C.K. Removal of dye by adsorption: A review. Int. J. Appl. Eng. Res. 2016, 11, 2675–2679. [Google Scholar]
- Mokif, L.A. Removal methods of synthetic dyes from industrial wastewater: A review. Mesop. Environ. J. 2019, 5, 23–40. [Google Scholar]
- Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Rajabi, M.; Mahanpoor, K.; Moradi, O. Removal of dye molecules from aqueous solution by carbon nanotubes and carbon nanotube functional groups: Critical review. RSC Adv. 2017, 7, 47083–47090. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.; Ngadi, N.; Inuwa, I.M.; Hassan, O. Recent advances in applications of activated carbon from biowaste for wastewater treatment: A short review. J. Clean. Prod. 2018, 175, 361–375. [Google Scholar] [CrossRef]
- Yagub, M.T.; Sen, T.K.; Afroze, S.; Ang, H.M. Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 2014, 209, 172–184. [Google Scholar] [CrossRef] [PubMed]
- Pavithra, K.G.; Jaikumar, V. Removal of colorants from wastewater: A review on sources and treatment strategies. J. Ind. Eng. Chem. 2019, 75, 1–19. [Google Scholar] [CrossRef]
- Kismir, Y.; Aroguz, A.Z. Adsorption characteristics of the hazardous dye brilliant green on saklıkent mud. Chem. Eng. J. 2011, 172, 199–206. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Sarma, A. Adsorption characteristics of the dye, brilliant green, on neem leaf powder. Dyes Pigment. 2003, 57, 211–222. [Google Scholar] [CrossRef]
- Ghaedi, M.; Hossainian, H.; Montazerozohori, M.; Shokrollahi, A.; Shojaipour, F.; Soylak, M.; Purkait, M. A novel acorn based adsorbent for the removal of brilliant green. Desalination 2011, 281, 226–233. [Google Scholar] [CrossRef]
- Asadullah, M.; Asaduzzaman, M.; Kabir, M.S.; Mostofa, M.G.; Miyazawa, T. Chemical and structural evaluation of activated carbon prepared from jute sticks for brilliant green dye removal from aqueous solution. J. Hazard. Mater. 2010, 174, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Akter, N.; Hossain, M.A.; Hassan, M.J.; Amin, M.; Elias, M.; Rahman, M.M.; Asiri, A.M.; Siddiquey, I.A.; Hasnat, M.A. Amine modified tannin gel for adsorptive removal of brilliant green dye. J. Environ. Chem. Eng. 2016, 4, 1231–1241. [Google Scholar] [CrossRef]
- Salem, M.A.; Elsharkawy, R.G.; Hablas, M.F. Adsorption of brilliant green dye by polyaniline/silver nanocomposite: Kinetic, equilibrium, and thermodynamic studies. Eur. Polym. J. 2016, 75, 577–590. [Google Scholar] [CrossRef]
- Baidya, K.S.; Kumar, U. Adsorption of brilliant green dye from aqueous solution onto chemically modified areca nut husk. S. Afr. J. Chem. Eng. 2021, 35, 33–43. [Google Scholar]
- Mansour, R.A.E.-G.; Simeda, M.G.; Zaatout, A.A. Removal of brilliant green dye from synthetic wastewater under batch mode using chemically activated date pit carbon. RSC Adv. 2021, 11, 7851–7861. [Google Scholar] [CrossRef]
- Naga Babu, A.; Srinivasa Reddy, D.; Krishna Mohan, G.; Suresh Kumar, G.; Dora, T. Mathematical investigation into the sequential adsorption of silver ions and brilliant green dye using biochar derived from Gracilaria Rhodophyta algae. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Yaashikaa, P.; Kumar, P.S.; Jeevanantham, S.; Saravanan, R. A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environ. Pollut. 2022, 301, 119035. [Google Scholar] [CrossRef]
- Tay, C.-I.; Ong, S.-T. Guava leaves as adsorbent for the removal of emerging pollutant: Ciprofloxacin from aqueous solution. J. Phys. Sci. 2019, 30, 137–156. [Google Scholar] [CrossRef]
- Anjaneyulu, Y.; Sreedhara Chary, N.; Samuel Suman Raj, D. Decolourization of industrial effluents–available methods and emerging technologies—A review. Rev. Environ. Sci. Bio/Technol. 2005, 4, 245–273. [Google Scholar] [CrossRef]
- Gul, S.; Kanwal, M.; Qazi, R.A.; Gul, H.; Khattak, R.; Khan, M.S.; Khitab, F.; Krauklis, A.E. Efficient removal of methyl red dye by using bark of hopbush. Water 2022, 14, 2831. [Google Scholar] [CrossRef]
- Ozola-Davidane, R.; Burlakovs, J.; Tamm, T.; Zeltkalne, S.; Krauklis, A.E.; Klavins, M. Bentonite-ionic liquid composites for congored removal from aqueous solutions. J. Mol. Liq. 2021, 337, 116373. [Google Scholar] [CrossRef]
- Basharat, S.; Rehman, R.; Mitu, L. Adsorptive separation of brilliant green dye from water by tartaric acid-treated Holarrhena antidysenterica and Citrullus colocynthis biowaste. J. Chem. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Samiyammal, P.; Kokila, A.; Pragasan, L.A.; Rajagopal, R.; Sathya, R.; Ragupathy, S.; Krishnakumar, M.; Reddy, V.R.M. Adsorption of brilliant green dye onto activated carbon prepared from cashew nut shell by KOH activation: Studies on equilibrium isotherm. Environ. Res. 2022, 212, 113497. [Google Scholar] [CrossRef]
- Mane, V.S.; Babu, P.V. Studies on the adsorption of brilliant green dye from aqueous solution onto low-cost NaOH treated saw dust. Desalination 2011, 273, 321–329. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Munir, M.; Ashfaq, M.; Rashid, N.; Nazar, M.F.; Danish, M.; Han, J.-I. Adsorption of brilliant green dye from aqueous solution onto red clay. Chem. Eng. J. 2013, 228, 54–62. [Google Scholar] [CrossRef]
- Ukkund, S.J.; Puthiyillam, P.; Alshehri, H.M.; Goodarzi, M.; Taqui, S.N.; Anqi, A.E.; Safaei, M.R.; Ali, M.A.; Syed, U.T.; Mir, R.A. Adsorption method for the remediation of brilliant green dye using halloysite nanotube: Isotherm, kinetic and modeling studies. Appl. Sci. 2021, 11, 8088. [Google Scholar] [CrossRef]
- Mansour, R.; El Shahawy, A.; Attia, A.; Beheary, M.S. Brilliant green dye biosorption using activated carbon derived from guava tree wood. Int. J. Chem. Eng. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Urooj, M.; Fatima, R. Adsorption behavior of a model azo dye on surfactant modified alumina based adsorbent. Int. Res. J. Mod. Eng. Technol. Sci. 2021, 3, 891–906. [Google Scholar]
- Odiongenyi, A.O. Influence of sol gel conversion on the adsorption capacity of crab shell for the removal of crystal violet from aqueous solution. Commun. Phys. Sci. 2022, 8, 121–127. [Google Scholar]
- Hussain, N.A.; Taifi, A.; Alkadir, O.K.A.; Obaid, N.H.; Abboud, Z.M.; Aljeboree, A.M.; Al Bayaa, A.L.; Abed, S.A.; Alkaim, A.F. Role of pomegranate peels as a activated carbon for removal of pollutants. IOP Conf. Ser. Earth Environ. Sci. 2022, 1029, 012028. [Google Scholar] [CrossRef]
- Mane, V.S.; Mall, I.D.; Srivastava, V.C. Use of bagasse fly ash as an adsorbent for the removal of brilliant green dye from aqueous solution. Dyes Pigment. 2007, 73, 269–278. [Google Scholar] [CrossRef]
- Nandi, B.K.; Goswami, A.; Purkait, M.K. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 2009, 161, 387–395. [Google Scholar] [CrossRef]
- Karimulla, S.; Ravindhranath, K. Removal of brilliant green dye from polluted waters using bio-sorbents derived from some plant materials. Asian J. Res. Chem. 2012, 5, 1350–1359. [Google Scholar]
- Kataria, N.; Garg, V. Application of edta modified fe3o4/sawdust carbon nanocomposites to ameliorate methylene blue and brilliant green dye laden water. Environ. Res. 2019, 172, 43–54. [Google Scholar] [CrossRef]
- Santhi, T.; Manonmani, S.; Smitha, T. Removal of malachite green from aqueous solution by activated carbon prepared from the epicarp of Ricinus communis by adsorption. J. Hazard. Mater. 2010, 179, 178–186. [Google Scholar] [CrossRef]
- Nasuha, N.; Zurainan, H.; Maarof, H.; Zubir, N.; Amri, N. Effect of cationic and anionic dye adsorption from aqueous solution by using chemically modified papaya seed. Int. Conf. Environ. Sci. Eng. 2011, 8, 50–54. [Google Scholar]
- Aboelenin, R.M.; Kheder, S.; Farag, H.K.; El Nabarawy, T. Removal of cationic neutral red dye from aqueous solutions using natural and modified rice straw. Egypt. J. Chem. 2017, 60, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Gupta, V. Application of low-cost adsorbents for dye removal–a review. J. Environ. Manage. 2009, 90, 2313–2342. [Google Scholar] [CrossRef]
- Corbett, J.F. Pseudo first-order kinetics. J. Chem. Educ. 1972, 49, 663. [Google Scholar] [CrossRef]
- Ho, Y.-S. Review of second-order models for adsorption systems. J. Hazard. Mater. 2006, 136, 681–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, T.; Noreen, U.; Ali, R.; Ullah, A.; Naeem, A.; Aslam, M. Adsorptive removal of congo red from aqueous phase using graphene–tin oxide composite as a novel adsorbent. Int. J. Environ. Sci. Technol. 2022, 19, 10275–10290. [Google Scholar] [CrossRef]
- Guaragnone, T.; Rossi, M.; Chelazzi, D.; Mastrangelo, R.; Severi, M.; Fratini, E.; Baglioni, P. pH-responsive semi-interpenetrated polymer networks of pHEMA/PAA for the capture of copper ions and corrosion removal. ACS Appl. Mater. Interfaces 2022, 14, 7471–7485. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Ullah, T.; Gul, H.; Khitab, F.; Khattak, R.; Ali, Y.; Rasool, S.; Khan, M.S.; Zekker, I. Adsorption of remazol brilliant violet-5R from aqueous solution using sugarcane bagasse as biosorbent: Kinetic and thermodynamic studies. Water 2022, 14, 3014. [Google Scholar] [CrossRef]
- Gnanasambandam, R.; Proctor, A. Determination of pectin degree of esterification by diffuse reflectance fourier transform infrared spectroscopy. Food Chem. 2000, 68, 327–332. [Google Scholar] [CrossRef]
- Yun, Y.-S.; Park, D.; Park, J.M.; Volesky, B. Biosorption of trivalent chromium on the brown seaweed biomass. Environ. Sci. Technol. 2001, 35, 4353–4358. [Google Scholar] [CrossRef]
- Sievers, R.E.; Bailar, J.C., Jr. Some metal chelates of ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and triethylenetetraminehexaacetic acid. Inorg. Chem. 1962, 1, 174–182. [Google Scholar] [CrossRef]
- Kumar, M.; Elangovan, G.; Tamilarasan, R.; Vijayakumar, G.; Mukeshkumar, P.; Sendhilnathan, S. Biosorption of aniline blue from aqueous solution using a novel biosorbent Zizyphus oenoplia seeds: Modeling studies. Pol. J. Chem. Technol. 2015, 17, 70–77. [Google Scholar] [CrossRef]
Biosorbent | Initial Dye Conc. (ppm) | Adsorbent Dose (g) | Contact Time | Percent Removal | Reference |
---|---|---|---|---|---|
Red clay | 20 | 0.4 | 4 h | 96 | [27] |
Kaolin | 20 | 1 | 90 min | 91 | [34] |
EDTA-modified magnetic sawdust carbon nanocomposites | 10 | 0.5 | 0.5 h | 96.7 | [36] |
Ficus benghalensis tree leaves | 50 | 0.05 | 60 min | 97.3 | Present work |
Langmuir Adsorption Isotherms | Freundlich Adsorption Isotherm | |||||
---|---|---|---|---|---|---|
Qmax (mg/g) | KL (L/g) | RL | R2 | KF (mg/g) | 1/n | R2 |
−25.64 | −0.27 | −0.066 | 0.86 | 10.98 | 1.23 | 0.93 |
Pseudo-First-Order Kinetic Model | Pseudo-Second-Order Kinetic Model | ||||
---|---|---|---|---|---|
k1 | qe | R2 | k2 | qe | R2 |
0.00092 | 27.72 | 0.18 | −2.603 | 19.6 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, S.; Gul, A.; Gul, H.; Khattak, R.; Ismail, M.; Khan, S.U.; Khan, M.S.; Aouissi, H.A.; Krauklis, A. Removal of Brilliant Green Dye from Water Using Ficus benghalensis Tree Leaves as an Efficient Biosorbent. Materials 2023, 16, 521. https://doi.org/10.3390/ma16020521
Gul S, Gul A, Gul H, Khattak R, Ismail M, Khan SU, Khan MS, Aouissi HA, Krauklis A. Removal of Brilliant Green Dye from Water Using Ficus benghalensis Tree Leaves as an Efficient Biosorbent. Materials. 2023; 16(2):521. https://doi.org/10.3390/ma16020521
Chicago/Turabian StyleGul, Salma, Azra Gul, Hajera Gul, Rozina Khattak, Muhammad Ismail, Sana Ullah Khan, Muhammad Sufaid Khan, Hani Amir Aouissi, and Andrejs Krauklis. 2023. "Removal of Brilliant Green Dye from Water Using Ficus benghalensis Tree Leaves as an Efficient Biosorbent" Materials 16, no. 2: 521. https://doi.org/10.3390/ma16020521
APA StyleGul, S., Gul, A., Gul, H., Khattak, R., Ismail, M., Khan, S. U., Khan, M. S., Aouissi, H. A., & Krauklis, A. (2023). Removal of Brilliant Green Dye from Water Using Ficus benghalensis Tree Leaves as an Efficient Biosorbent. Materials, 16(2), 521. https://doi.org/10.3390/ma16020521