On Structural and Magnetic Properties of Substituted SmCo5 Materials
Abstract
:1. Introduction
2. Experimental
3. Computational Details
4. Results and Discussion
4.1. Structural Characterization
4.2. Ab Initio Electronic and Magnetic Properties for x = 0.5
4.3. Magnetic Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gutfleisch, O.; Willard, M.A.; Brück, E.; Chen, C.H.; Sankar, S.G.; Liu, J.P. Magnetic Materials and Devices for the 21st Century: Stronger, Lighter, and More Energy Efficient. Adv. Mater. 2010, 23, 821–842. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H. The current and future status of rare earth permanent magnets. Scr. Mater. 2018, 154, 273–276. [Google Scholar] [CrossRef]
- Zhang, S.; Ding, Y.; Liu, B.; Chang, C. Supply and demand of some critical metals and present status of their recycling in WEEE. Waste Manag. 2017, 65, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Haque, N.; Mudd, G.M.; Jowitt, S.M. Assessing the energy requirements and global warming potential of the production of rare earth elements. J. Clean. Prod. 2016, 139, 1282–1297. [Google Scholar] [CrossRef]
- Strnat, K.J.; Strnat, R.M. Rare earth-cobalt permanent magnets. J. Magn. Magn. Mater. 1991, 100, 38–56. [Google Scholar] [CrossRef]
- Skokov, K.; Gutfleisch, O. Heavy rare earth free, free rare earth and rare earth free magnets—Vision and reality. Scr. Mater. 2018, 154, 289–294. [Google Scholar] [CrossRef]
- Pan, S. Introduction. In Rare Earth Permanent-Magnet Alloys’ High Temperature Phase Transformation; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–26. [Google Scholar] [CrossRef]
- Strnat, K.; Hoffer, G.; Olson, J.; Ostertag, W.; Becker, J.J. A Family of New Cobalt-Base Permanent Magnet Materials. J. Appl. Phys. 1967, 38, 1001–1002. [Google Scholar] [CrossRef]
- Benz, M.G.; Martin, D.L. Initial Observations: Cobalt-Mischmetal-Samarium Permanent Magnet Alloys. J. Appl. Phys. 1971, 42, 1534–1535. [Google Scholar] [CrossRef]
- Tewari, R.A. Magnetic properties of a mischmetal-cobalt alloy. Bull. Mater. Sci. 1980, 2, 177–180. [Google Scholar] [CrossRef]
- Zuo, W.-L.; Zuo, S.-L.; Li, R.; Zhao, T.-Y.; Hu, F.-X.; Sun, J.-R.; Zhang, X.-F.; Liu, J.P.; Shen, B.-G. High performance misch-metal (MM)-Fe-B magnets prepared by melt spinning. J. Alloy Compd. 2017, 695, 1786–1792. [Google Scholar] [CrossRef]
- Li, R.; Shang, R.X.; Xiong, J.F.; Liu, D.; Kuang, H.; Zuo, W.L.; Zhao, T.Y.; Sun, J.R.; Shen, B.G. Magnetic properties of (misch metal, Nd)-Fe-B melt-spun magnets. AIP Adv. 2017, 7, 056207. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Zhong, Z. Research and development of Ce-containing Nd2Fe14 B-type alloys and permanent magnetic materials. J. Mater. Sci. Technol. 2017, 33, 1087–1096. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Argaman, N.; Makov, G. Density functional theory: An introduction. Am. J. Phys. 2000, 68, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Kryachko, E.S. On the original proof by reductio ad absurdum of the Hohenberg-Kohn theorem for many-electron Coulomb systems. Int. J. Quantum Chem. 2005, 103, 818–823. [Google Scholar] [CrossRef] [Green Version]
- David, G.; Guihéry, N.; Ferré, N. What Are the Physical Contents of Hubbard and Heisenberg Hamiltonian Interactions Extracted from Broken Symmetry DFT Calculations in Magnetic Compounds? J. Chem. Theory Comput. 2017, 13, 6253–6265. [Google Scholar] [CrossRef]
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- van der Marel, D.; Sawatzky, G.A. Electron-electron interaction and localization in d and f transition metals. Phys. Rev. B 1988, 37, 10674–10684. [Google Scholar] [CrossRef] [PubMed]
- Okhotnikov, K.; Charpentier, T.; Cadars, S. Supercell program: A combinatorial structure-generation approach for the local-level modeling of atomic substitutions and partial occupancies in crystals. J. Chemin. 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Herath, U.; Tavadze, P.; He, X.; Bousquet, E.; Singh, S.; Muñoz, F.; Romero, A.H. PyProcar: A Python library for electronic structure pre/post-processing. Comput. Phys. Commun. 2020, 251, 107080. [Google Scholar] [CrossRef] [Green Version]
- Bartashevich, M.; Goto, T.; Radwanski, R.; Korolyov, A. Magnetic anisotropy and high-field magnetization process of CeCo5. J. Magn. Magn. Mater. 1994, 131, 61–66. [Google Scholar] [CrossRef]
- Gabay, A.; Hu, X.; Hadjipanayis, G. Preparation of YCo5, PrCo5 and SmCo5 anisotropic high-coercivity powders via mechanochemistry. J. Magn. Magn. Mater. 2014, 368, 75–81. [Google Scholar] [CrossRef]
- Pang, H.; Qiao, L.; Li, F.S. Calculation of magnetocrystalline anisotropy energy in NdCo5. Phys. Status Solidi B 2009, 246, 1345–1350. [Google Scholar] [CrossRef]
- Wei, X.Z.; Hu, S.J.; Zeng, D.C.; Kou, X.C.; Liu, Z.Y.; Bruck, E.; de Boer, F.R. Magnetic and crystallographic properties of Ce2Co17–xGax compounds. J. Alloy Compd. 1998, 279, 301–305. [Google Scholar] [CrossRef]
- Liu, Q.; Liang, J.; Rao, G.; Tang, W.; Sun, J.; Chen, X.; Shen, B. Structure and uniaxial magnetocrystalline anisotropy of intermetallic compounds La2Co17−xTix. Appl. Phys. Lett. 1997, 71, 1869–1871. [Google Scholar] [CrossRef]
- Khan, Y. On the crystal structures of the R2Co17 intermetallic compounds. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1973, 29, 2502–2507. [Google Scholar] [CrossRef]
- Khan, Y. A contribution to the Sm–Co phase diagram. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1974, 30, 861–864. [Google Scholar] [CrossRef]
- Johnson, Q.; Wood, D.H.; Smith, G.S.; Ray, A.E. Refinement of Th2Zn17 structure: Pr2Fe. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1968, 24, 274–276. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Wang, F.; Meng, F.; Zhang, J. Phase structure and magnetic properties of La/Ce substituted nanocomposite SmCo5/α-Fe magnets prepared by high energy ball milling and subsequent annealing. J. Magn. Magn. Mater. 2020, 521, 167534. [Google Scholar] [CrossRef]
- Grånäs, O.; Di Marco, I.; Thunström, P.; Nordström, L.; Eriksson, O.; Björkman, T.; Wills, J. Charge self-consistent dynamical mean-field theory based on the full-potential linear muffin-tin orbital method: Methodology and applications. Comput. Mater. Sci. 2012, 55, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Söderlind, P.; Landa, A.; Locht, I.L.M.; Åberg, D.; Kvashnin, Y.; Pereiro, M.; Däne, M.; Turchi, P.E.A.; Antropov, V.P.; Eriksson, O. Prediction of the new efficient permanent magnet SmCoNiFe3. Phys. Rev. B 2017, 96, 100404. [Google Scholar] [CrossRef] [Green Version]
- Locht, I.L.M.; Kvashnin, Y.O.; Rodrigues, D.C.M.; Pereiro, M.; Bergman, A.; Bergqvist, L.; Lichtenstein, A.I.; Katsnelson, M.I.; Delin, A.; Klautau, A.B.; et al. Standard model of the rare earths analyzed from the Hubbard I approximation. Phys. Rev. B 2016, 94, 085137. [Google Scholar] [CrossRef] [Green Version]
- Brooks, M.S.S.; Eriksson, O.; Wills, J.M.; Johansson, B. Density Functional Theory of Crystal Field Quasiparticle Excitations and theAb InitioCalculation of Spin Hamiltonian Parameters. Phys. Rev. Lett. 1997, 79, 2546–2549. [Google Scholar] [CrossRef]
- Giaremis, S.; Katsikas, G.; Sempros, G.; Gjoka, M.; Sarafidis, C.; Kioseoglou, J. Ab initio, artificial neural network predictions and experimental synthesis of mischmetal alloying in Sm–Co permanent magnets. Nanoscale 2022, 14, 5824–5839. [Google Scholar] [CrossRef]
- Gabay, A.M.; Larson, P.; Mazin, I.I.; Hadjipanayis, G.C. Magnetic states and structural transformations in Sm(Co,Cu)5 and Sm(Co,Fe,Cu)5 permanent magnets. J. Phys. D Appl. Phys. 2005, 38, 1337–1341. [Google Scholar] [CrossRef]
- Coey, J.M.D. Hard Magnetic Materials: A Perspective. IEEE Trans. Magn. 2011, 47, 4671–4681. [Google Scholar] [CrossRef]
- Al-Omari, I.; Skomski, R.; Thomas, R.; Leslie-Pelecky, D.; Sellmyer, D. High-temperature magnetic properties of mechanically alloyed SmCo5 and YCo5 magnets. IEEE Trans. Magn. 2001, 37, 2534–2536. [Google Scholar] [CrossRef]
- Irkhin, Y.P.; Irkhin, V.Y. The anion and cation effects in the magnetic anisotropy of rare-earth compounds: Charge screening by conduction electrons. Phys. Solid State 2000, 42, 1087–1093. [Google Scholar] [CrossRef]
- Chen, C.H.; Walmer, M.S.; Walmer, M.H.; Gong, W.; Ma, B.-M. The relationship of thermal expansion to magnetocrystalline anisotropy, spontaneous magnetization, and Tc for permanent magnets. J. Appl. Phys. 1999, 85, 5669–5671. [Google Scholar] [CrossRef]
- Nguyen, M.C.; Yao, Y.; Wang, C.-Z.; Ho, K.-M.; Antropov, V.P. Magnetocrystalline anisotropy in cobalt based magnets: A choice of correlation parameters and the relativistic effects. J. Phys. Condens. Matter 2018, 30, 195801. [Google Scholar] [CrossRef] [Green Version]
- Larson, P.; Mazin, I.I.; Papaconstantopoulos, D.A. Calculation of magnetic anisotropy energy in SmCo5. Phys. Rev. B 2003, 67, 214405. [Google Scholar] [CrossRef] [Green Version]
- Binnemans, K.; Jones, P.T.; Müller, T.; Yurramendi, L. Rare Earths and the Balance Problem: How to Deal with Changing Markets? J. Sustain. Met. 2018, 4, 126–146. [Google Scholar] [CrossRef] [Green Version]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; p. 242. [Google Scholar] [CrossRef]
x | a = b (Å) | c (Å) | c/a |
---|---|---|---|
0.1 | 4.9973(10) | 3.9780(9) | 0.7960 |
0.3 | 4.9944(7) | 3.9869(6) | 0.7983 |
0.5 | 4.9878(14) | 3.9913(12) | 0.8002 |
0.7 | 4.9849(15) | 3.9975(13) | 0.8019 |
1.0 | 4.9557(6) | 4.0212(8) | 0.8114 |
Atomic Average | m/atom (μB/atom) |
---|---|
Sm | −0.33 |
La | −0.32 |
Ce | −1.29 |
Co (2c) | 1.64 |
Co (3g) | 1.63 |
x | Tc (K) | MS (Am2/kg) | MS (μΒ/f.u.) |
---|---|---|---|
0 | 1020 | 102 | 8.15 [48] |
0.1 | 913 | 98.1 | 7.80 |
0.3 | 876 | 96.2 | 7.61 |
0.5 | 828 | 83.2 | 6.55 |
0.7 | 795 | 77.1 | 6.10 |
1.0 | 705 | 71.4 | 5.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gjoka, M.; Sempros, G.; Giaremis, S.; Kioseoglou, J.; Sarafidis, C. On Structural and Magnetic Properties of Substituted SmCo5 Materials. Materials 2023, 16, 547. https://doi.org/10.3390/ma16020547
Gjoka M, Sempros G, Giaremis S, Kioseoglou J, Sarafidis C. On Structural and Magnetic Properties of Substituted SmCo5 Materials. Materials. 2023; 16(2):547. https://doi.org/10.3390/ma16020547
Chicago/Turabian StyleGjoka, Margariti, Georgios Sempros, Stefanos Giaremis, Joseph Kioseoglou, and Charalampos Sarafidis. 2023. "On Structural and Magnetic Properties of Substituted SmCo5 Materials" Materials 16, no. 2: 547. https://doi.org/10.3390/ma16020547
APA StyleGjoka, M., Sempros, G., Giaremis, S., Kioseoglou, J., & Sarafidis, C. (2023). On Structural and Magnetic Properties of Substituted SmCo5 Materials. Materials, 16(2), 547. https://doi.org/10.3390/ma16020547