Production, Mechanical and Functional Properties of Long-Length TiNiHf Rods with High-Temperature Shape Memory Effect
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Features of the Manufacturing Process of Initial Ingots and Long-Length Rods from TiNiHf Alloys
3.2. Microstructural and Phase Analysis
3.3. Temperature Ranges of Martensitic Transformations
3.4. Temperature Ranges of Martensitic Transformations
4. Conclusions
- Initial ingots with 1.5, 3.0 and 5.0 at.% Hf were successfully obtained by electron beam melting from Ti-Ni billets and pure Hf wire, used as raw materials.
- Ingots with 3.0 and 5.0 at.% Hf demonstrated insufficient technological plasticity, presumably because of the excess precipitation of (Ti,Hf)2Ni-type particles with the decrease in Ni content. The premature destruction of ingots during the process of rotary forging does not allow obtaining high-quality long-length rods.
- A good-quality rod with a diameter of 3.5 mm and a length of 870 mm was obtained from the ingot with 1.5 at.% Hf. The obtained TiNiHf rod had relatively high values of mechanical properties: a dislocation yield stress of 800 MPa, ultimate tensile strength of 1000 MPa, and elongation to fracture of 24%.
- The obtained rods provided the required values of functional properties: a completely recoverable strain of 5%, and a finishing temperature of shape recovery after 2% of induced strain of 125 °C in the as-forged state and of 155 °C after post-deformation annealing at 550 °C for 2 h.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jani, J.M.; Leary, M.; Subic, A.; Gibson, M.A. A review of shape memory alloy research, applications and opportunities. Mater. Des. 2014, 56, 1078–1113. [Google Scholar] [CrossRef]
- Resnina, N.; Palani, I.A.; Belyaev, S.; Prabu, S.M.; Liulchak, P.; Karaseva, U.; Manikandan, M.; Jayachandran, S.; Bryukhanova, V.; Sahu, A.; et al. Structure, martensitic transformations and mechanical behaviour of NiTi shape memory alloy produced by wire arc additive manufacturing. J. Alloys Compd. 2021, 851, 156851. [Google Scholar] [CrossRef]
- Resnina, N.; Rubanik, V. Shape Memory Alloys: Properties, Technologies, Opportunities; Trans Tech Publishing: Wollerau, Switzerland, 2015; p. 640. [Google Scholar]
- Ryklina, E.; Korotitskiy, A.; Khmelevskaya, I.; Prokoshkin, S.; Polyakova, K.; Kolobova, A.; Soutorine, M.; Chernov, A. Control of phase transformations and microstructure for optimum realization of one-way and two-way shape memory effects in removable surgical clips. Mater. Des. 2017, 136, 174–184. [Google Scholar] [CrossRef]
- Sun, Q.; Matsui, R.; Takeda, K.; Pieczyska, E. Advances in Shape Memory Materials: In Commemoration of the Retirement of Prof. Hisaaki Tobushi; Springer: Berlin/Heidelberg, Germany, 2017; p. 241. [Google Scholar] [CrossRef]
- Karelin, R.D.; Khmelevskaya, I.Y.; Komarov, V.S.; Andreev, V.A.; Perkas, M.M.; Yusupov, V.S.; Prokoshkin, S.D. Effect of quasi-continuous equal-channel angular pressing on structure and properties of Ti-Ni shape memory alloys. J. Mater. Eng. Perform. 2021, 30, 3096–3106. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Prokoshkin, S.; Zaripova, M.; Isaenkova, M.; Korpala, G.; Kawalla, R. Effect of biaxial cyclic severe deformation on structure and properties of Ti-Ni alloys. J. Alloys Compd. 2019, 797, 842–848. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Kawalla, R.; Korpala, G.; Prahl, U.; Yusupov, V.; Prokoshkin, S. Deformation Behavior, Structure, and Properties of an Aging Ti-Ni Shape Memory Alloy after Compression Deformation in a Wide Temperature Range. JOM 2021, 73, 620–629. [Google Scholar] [CrossRef]
- Khmelevskaya, I.Y.; Karelin, R.D.; Prokoshkin, S.D.; Isaenkova, M.G.; Perlovich, Y.A.; Fesenko, V.A.; Komarov, V.S.; Zaripova, M.M. Features of nanostructure and functional properties formation in Ti-Ni shape memory alloys subjected to quasi-continuous equal channel angular pressing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 503, 012024. [Google Scholar] [CrossRef]
- Valiev, R.; Estrin, Y.; Horita, Z.; Langdon, T.; Zehetbauer, M.; Zhu, Y. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 2006, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Sabirov, I.; Enikeev, N.; Murashkin, M.; Valiev, R. Bulk Nanostructured Materials with Multifunctional Properties; Springer: Berlin/Heidelberg, Germany, 2015; p. 118. [Google Scholar] [CrossRef]
- Khan, M.I.; Kim, H.Y.; Miyazaki, S. A review of TiNiPdCu alloy system for high temperature shape memory applications. Shape Mem. Superelasticity 2015, 1, 85–106. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.L.; Tian, X.H.; Ji, G.J.; Gui, T.L.; Cai, W. Elastic property and electronic structure of TiNiPt high-temperature shape memory alloys. Solid State Commun. 2008, 147, 8–10. [Google Scholar] [CrossRef]
- Noebe, R.; Biles, T.; Padula, S.; Soboyeio, W.; Srivastan, T. Advanced Structural Materials: Properties, Design Optimization, and Applications; CRC Press: Boca Raton, FL, USA, 2007; p. 145. [Google Scholar]
- Karakoc, O.; Atli, K.C.; Evirgen, A.; Pons, J.; Santamarta, R.; Benafan, O.; Noebe, R.D.; Karaman, I. Effects of training on the thermomechanical behavior of NiTiHf and NiTiZr high temperature shape memory alloys. Mater. Sci. Eng. A 2020, 794, 139857. [Google Scholar] [CrossRef]
- Tong, Y.; Shuitcev, A.; Zheng, Y. Recent development of TiNi-based shape memory alloys with high cycle stability and high transformation temperature. Adv. Eng. Mater. 2020, 22, 1900496. [Google Scholar] [CrossRef] [Green Version]
- Young, A.W.; Wheeler, R.W.; Ley, N.A.; Benafan, O.; Young, M.L. Microstructural and thermomechanical comparison of Ni-rich and Ni-lean NiTi-20 at.% Hf high temperature shape memory alloy wires. Shape Mem. Superelasticity 2019, 5, 397–406. [Google Scholar] [CrossRef]
- Belbasi, M.; Salehi, M.T. Influence of chemical composition and melting process on hot rolling of NiTiHf shape memory alloy. J. Mater. Eng. Perform. 2014, 23, 2368–2372. [Google Scholar] [CrossRef]
- Babacan, N.; Bilal, M.; Hayrettin, C.; Liu, J.; Benafan, O.; Karaman, I. Effects of cold and warm rolling on the shape memory response of Ni50Ti30Hf20 high-temperature shape memory alloy. Acta Mater. 2018, 157, 228–244. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, C.H.; Kim, S.W.; Hong, J.K.; Oh, C.S.; Jeon, Y.M.; Kim, K.M.; Yeom, J.T. Effects of microstructure and deformation conditions on the hot formability of Ni-Ti-Hf shape memory alloys. J. Nanosci. Nanotechnol. 2014, 14, 9548–9553. [Google Scholar] [CrossRef] [PubMed]
- Chang-Long, T.; Wei, C.; Xiao-Hua, T. First-principles study on the effect of Hf content on martensitic transformation temperature of TiNiHf alloy. Chin. Phys. 2006, 15, 2718. [Google Scholar] [CrossRef] [Green Version]
- Pushin, V.G.; Kuranova, N.N.; Pushin, A.V.; Uksusnikov, A.N.; Kourov, N.I.; Kuntsevich, T.E. Structural and phase transformations, mechanical properties, and shape-memory effects in quasibinary Ni50Ti38Hf12 alloy obtained by quenching from the melt. Phys. Met. Metallogr. 2016, 117, 1251–1260. [Google Scholar] [CrossRef]
- Javadi, M.M.; Belbasi, M.; Salehi, M.T.; Afshar, M.R. Effect of aging on the microstructure and shape memory effect of a hot-rolled NiTiHf alloy. J. Mater. Eng. Perform. 2011, 20, 618–622. [Google Scholar] [CrossRef]
- Karaca, H.E.; Saghaian, S.M.; Ded, G.; Tobe, H.; Basaran, B.; Maier, H.J.; Noebe, R.D.; Chumlyakov, Y.I. Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater. 2013, 61, 7422–7431. [Google Scholar] [CrossRef]
- Amin-Ahmadi, B.; Pauza, J.G.; Shamimi, A.; Duerig, T.W.; Noebe, R.D.; Stebner, A.P. Coherency strains of H-phase precipitates and their influence on functional properties of nickel-titanium-hafnium shape memory alloys. Scr. Mater. 2018, 147, 83–87. [Google Scholar] [CrossRef]
- Amin-Ahmadi, B.; Gallmeyer, T.; Pauza, J.G.; Duerig, T.W.; Noebe, R.D.; Stebner, A.P. Effect of a pre-aging treatment on the mechanical behaviors of Ni50. 3Ti49. 7− xHfx (x≤ 9 at.%) Shape memory alloys. Scr. Mater. 2018, 147, 11–15. [Google Scholar] [CrossRef]
- Tagiltsev, A.I.; Panchenko, E.Y.; Timofeeva, E.E.; Chumlyakov, Y.I.; Fatkullin, I.D.; Marchenko, E.S.; Karaman, I. The effect of stress-induced martensite aging in tension and compression on B2–B19′ martensitic transformation in Ni50. 3Ti32. 2Hf17. 5 high-temperature shape memory alloy. Smart Mater. Struct. 2021, 30, 025039. [Google Scholar] [CrossRef]
- Meng, X.L.; Cai, W.; Chen, F.; Zhao, L.C. Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr. Mater. 2006, 54, 1599–1604. [Google Scholar] [CrossRef]
- Kasimtsev, A.; Volodko, S.; Yudin, S.; Sviridova, T.; Cheverikin, V. Synthesis of powder alloys based on the Ti-Ni-Hf system via a calcium hydride reduction process. Inorg. Mater. 2019, 55, 449–457. [Google Scholar] [CrossRef]
- Volodko, S.; Yudin, S.; Cheverikin, V.; Kasimtsev, A.; Markova, G.; Sviridova, T.; Karpov, B.; Goncharov, S.; Alimov, I. Structure and Properties of Ti28Ni50Hf22 Powder Alloy. Inorg. Mater. Appl. Res. 2020, 11, 1165–1172. [Google Scholar] [CrossRef]
- Catal, A.A.; Bedir, E.; Yilmaz, R.; Canadinc, D. Design of a NiTiHf shape memory alloy with an austenite finish temperature beyond 400 °C utilizing artificial intelligence. J. Alloys Compd. 2022, 904, 164135. [Google Scholar] [CrossRef]
- Shuitcev, A.; Gunderov, D.V.; Sun, B.; Li, L.; Valiev, R.Z.; Tong, Y.X. Nanostructured Ti29.7Ni50.3Hf20 high temperature shape memory alloy processed by high-pressure torsion. J. Mater. Sci. Technol. 2020, 52, 218–225. [Google Scholar] [CrossRef]
- Shuitcev, A.; Vasin, R.N.; Balagurov, A.M.; Li, L.; Bobrikov, I.A.; Tong, Y.X. Thermal expansion of martensite in Ti29.7Ni50.3Hf20 shape memory alloy. Intermetallics 2020, 125, 106889. [Google Scholar] [CrossRef]
- Akgul, O.; Tugrul, H.O.; Kockar, B. Effect of the cooling rate on the thermal and thermomechanical behavior of NiTiHf high-temperature shape memory alloy. J. Mater. Res. 2020, 35, 1572–1581. [Google Scholar] [CrossRef]
- Komarov, V.; Khmelevskaya, I.; Karelin, R.; Postnikov, I.; Korpala, G.; Kawalla, R.; Prahl, U.; Yusupov, V.; Prokoshkin, S. Deformation Behavior, Structure and Properties of an Equiatomic Ti–Ni Shape Memory Alloy Compressed in a Wide Temperature Range. Trans. Ind. Inst. Met. 2021, 74, 2419–2426. [Google Scholar] [CrossRef]
- Sheremetyev, V.; Lukashevich, K.; Kreitcberg, A.; Kudryashova, A.; Tsaturyants, M.; Galkin, S.; Andreev, V.; Prokoshkin, S.; Brailovski, V. Optimization of a thermomechanical treatment of superelastic Ti-Zr-Nb alloys for the production of bar stock for orthopedic implants. J. Alloys Compd. 2022, 928, 167143. [Google Scholar] [CrossRef]
Ni, wt.% | Ti, wt.% | Impurities, wt.% | ||||
---|---|---|---|---|---|---|
C | O | N | H | Other | ||
55.15 | Balance | 0.035 | 0.030 | 0.002 | 0.001 | <0.1 |
Hf, wt.% | Impurities, wt.% | ||||||
---|---|---|---|---|---|---|---|
C | O | N | H | Si | Fe | Zr | |
Balance | 0.008 | 0.020 | <0.005 | 0.001 | <0.005 | 0.030 | 0.58 |
No. | Dimensions, mm | Weight, g | Composition (without Impurities) | |||||
---|---|---|---|---|---|---|---|---|
wt.% | at.% | |||||||
Ti | Ni | Hf | Ti | Ni | Hf | |||
1 | 11 × 16 × 162 | 102 | 42.9 | 52.7 | 4.4 | 49.0 | 49.5 | 1.5 |
2 | 10 × 15 × 230 | 160 | 40.4 | 49.6 | 10.0 | 48.5 | 48.5 | 3.0 |
3 | 11 × 17 × 200 | 168 | 38.2 | 47.0 | 14.8 | 47.5 | 47.5 | 5.0 |
Hf Content | Annealing | Ms, °C | °C | Mf, °C | As, °C | °C | Af, °C | As − Af, °C | Ms − Mf, °C |
---|---|---|---|---|---|---|---|---|---|
1.5 at.% Hf | - | 54 | 28 | −12 | 32 | 62 | 79 | 46 | 66 |
1.5 at.% Hf | +1000 °C, 1 h | 45 | 38 | 27 | 52 | 70 | 79 | 26 | 18 |
3.0 at.% Hf | - | 71 | 60 | 40 | 71 | 107 | 114 | 43 | 31 |
3.0 at.% Hf | +1000 °C, 1 h | 78 | 70 | 53 | 99 | 117 | 121 | 22 | 25 |
5.0 at.% Hf | - | 71 | 55 | 35 | 76 | 110 | 123 | 47 | 36 |
5.0 at.% Hf | +1000 °C, 1 h | 80 | 62 | 47 | 86 | 120 | 126 | 40 | 33 |
TMT | Ms, °C | Mf, °C | As, °C | Af, °C | − Mf, °C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | - | - | - | 67 | 54 | 36 | - | - | - | 76 | 99 | 113 | 37 | 31 |
RF + 550 °C, 2 h | 70 | 57 | - | - | 45 | 35 | 75 | 89 | - | - | 102 | 116 | 25 | 44 |
TMT | σcr, MPa | σy, MPa | Δσ, MPa | σB, MPa | δ, % | HV |
---|---|---|---|---|---|---|
RF | 214 | 800 | 586 | 1000 | 24 | 210 |
RF + 550 °C, 2 h | 202 | 840 | 638 | 990 | 29 | 215 |
TMT | Induced Strain, % | Total Completely Recoverable Strain, % | SRR, % | TRSR, °C |
---|---|---|---|---|
RF | 2.0 | 2.0 | 100 | 65–125 |
RF | 6.0 | 5.0 | 83 | 100–155 |
RF + 550 °C, 2 h | 2.0 | 2.0 | 100 | 110–155 |
RF + 550 °C, 2 h | 6.0 | 4.0 | 67 | 70–180 |
RF + 1000 °C, 1 h | 6.0 | 4.0 | 67 | 120–155 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karelin, R.; Komarov, V.; Cherkasov, V.; Yusupov, V.; Prokoshkin, S.; Andreev, V. Production, Mechanical and Functional Properties of Long-Length TiNiHf Rods with High-Temperature Shape Memory Effect. Materials 2023, 16, 615. https://doi.org/10.3390/ma16020615
Karelin R, Komarov V, Cherkasov V, Yusupov V, Prokoshkin S, Andreev V. Production, Mechanical and Functional Properties of Long-Length TiNiHf Rods with High-Temperature Shape Memory Effect. Materials. 2023; 16(2):615. https://doi.org/10.3390/ma16020615
Chicago/Turabian StyleKarelin, Roman, Victor Komarov, Vladimir Cherkasov, Vladimir Yusupov, Sergey Prokoshkin, and Vladimir Andreev. 2023. "Production, Mechanical and Functional Properties of Long-Length TiNiHf Rods with High-Temperature Shape Memory Effect" Materials 16, no. 2: 615. https://doi.org/10.3390/ma16020615
APA StyleKarelin, R., Komarov, V., Cherkasov, V., Yusupov, V., Prokoshkin, S., & Andreev, V. (2023). Production, Mechanical and Functional Properties of Long-Length TiNiHf Rods with High-Temperature Shape Memory Effect. Materials, 16(2), 615. https://doi.org/10.3390/ma16020615