Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Microstructure and Thermal Stability of the UFG 2024 Alloy after Severe Plastic Deformation
3.2. Mechanical Properties of the UFG Alloy at an Elevated Temperature
4. Discussion
5. Conclusions
- The thermal stability range of the UFG 2024 alloy with a grain size of ∼0.1 μm was found to be 120–270 °C, where there was no strong structure degradation, and an enhanced level of microhardness was preserved.
- Tensile tests were performed at 190–270 °C and strain rates from 10−2 to 5 × 10−5 s−1 to determine ductility and the strain-rate sensitivity of flow stress. Elongations of 280% and m = 0.32 were achieved at a temperature of 240 °C and a strain rate of 10−3 s−1. Elongations of 400% and m = 0.33 were achieved for the first time at a lower temperature of 270 °C and a strain rate of 10−3 s−1. Therefore, it was demonstrated that in the UFG state the 2024 alloy exhibited superplastic behavior at lower temperatures (0.56–0.60) Tm.
- The strength of the Al 2024 alloy after low-temperature superplasticity was preserved at a level visibly higher than that after the standard hardening heat treatment T6 of this alloy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, W.; Zhuang, L.; Bottema, J.; Wittebrood, A.; De Smet, P.; Haszler, A.; Vieregge, A. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A 2000, 280, 37–49. [Google Scholar] [CrossRef]
- Hirsch, J. Aluminium in innovative light-weight car design. Mater. Trans. 2011, 52, 818–824. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Politis, D.J.; Wang, L.; Lin, J. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. Int. J. Lightweight Mater. Manuf. 2018, 1, 55–80. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Enikeev, N.A.; Murashkin, M.Y.; Kazykhanov, V.U.; Sauvage, X. On the origin of extremely high strength of ultrafine–grained Al alloys produced by severe plastic deformation. Scripta Mater. 2010, 63, 949–952. [Google Scholar] [CrossRef] [Green Version]
- Dobatkin, S.V.; Bastarache, E.N.; Sakai, G.; Fujita, T.; Horita, Z.; Langdon, T.G. Grain refinement and superplastic flow in an aluminum alloy processed by high-pressure torsion. Mater. Sci. Eng. A 2005, 408, 141–146. [Google Scholar] [CrossRef]
- Markushev, M.V.; Avtokratova, E.V.; Krymskiy, S.V.; Sitdikov, O.S. Effect of precipitates on nanostructuring and strengthening of high-strength aluminum alloys under high pressure torsion. J. Alloys Compd. 2018, 743, 773–779. [Google Scholar] [CrossRef]
- Paitova, O.; Bobruk, E.; Shasherina, S.; Bufan, Z. Effect of Severe Plastic Deformation on the structure and properties of the aluminum alloy system Al-Cu-Mg. Key Eng. Mater. 2019, 822, 94–100. [Google Scholar] [CrossRef]
- Kim, W.J.; Chung, C.S.; Ma, D.S.; Hong, S.I.; Kim, H.K. Optimization of strength and ductility of 2024 Al by equal channel angular pressing (ECAP) and post-ECAP aging. Scr. Mater. 2003, 49, 333–338. [Google Scholar] [CrossRef]
- Wongsa-Ngam, J.; Langdon, T.G. Advances in superplasticity from a laboratory curiosity to the development of a superplastic forming industry. Metals 2022, 12, 1921. [Google Scholar] [CrossRef]
- Hatch, J.E. Aluminium Properties and Physical Metallurgy; American Society for Metals: Metals Park, OH, USA, 1984; 422p. [Google Scholar]
- Lee, S.; Watanabe, K.; Matsuda, K.; Horita, Z. Low-temperature and high-strain-rate superplasticity of ultrafine-grained A7075 processed by high-pressure torsion. Mater. Trans. 2018, 59, 1341–1347. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Kazykhanov, V.U.; Mavlyutov, A.M.; Yudakhina, A.A.; Chinh, N.Q.; Murashkin, M.Y. Superplasticity and high strength in Al–Zn–Mg–Zr alloy with ultrafine grains. Adv. Eng. Mater. 2020, 22, 1900555. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zehetbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM 2006, 58, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Hebesberger, T.; Stüwe, H.P.; Vorhauer, A.; Wetscher, F.; Pippan, R. Structure of Cu deformed by high pressure torsion. Acta Mater. 2005, 53, 393–402. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Vorhauer, A.; Pippan, R. On the homogeneity of deformation by high pressure torsion. Scr. Mater. 2004, 51, 921–925. [Google Scholar] [CrossRef]
- Masuda, T.; Sauvage, X.; Hirosawa, S.; Horita, Z. Achieving highly strengthened Al–Cu–Mg alloy by grain refinement and grain boundary segregation. Mater. Sci. Eng. A 2020, 793, 139668. [Google Scholar] [CrossRef]
- Sha, G.; Marceau, R.K.W.; Gao, X.; Muddle, B.C.; Ringer, S.P. Nanostructure of aluminium alloy 2024: Segregation, clustering and precipitation processes. Acta Mater. 2011, 59, 1659–1670. [Google Scholar] [CrossRef]
- Nasedkina, Y.; Sauvage, X.; Bobruk, E.V.; Murashkin, M.Y.; Valiev, R.Z.; Enikeev, N.A. Mechanisms of precipitation induced by large strains in the Al-Cu system. J. Alloys Compd. 2017, 710, 736–747. [Google Scholar] [CrossRef]
- Bobruk, E.V.; Sauvage, X.; Enikeev, N.A.; Valiev, R.Z. Influence of fine scale features on room temperature superplastic behaviour of an ultrafine-grained Al-30Zn alloy. Mater. Lett. 2019, 254, 329–331. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Vergazov, A.N.; Gertsman, V.Y. Crystal-Geometric Analysis of Intercrystalline Boundaries in the Practice of Electron Microscopy; Nauka: Moscow, Russia, 1991; 231p. [Google Scholar]
- Wang, G. Superplastic forming (SPF) of complex sheet metal parts and structures. In Encyclopedia of Materials: Metals and Alloys; Caballero, F.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 4, pp. 417–434. [Google Scholar] [CrossRef]
- Zhang, K.F.; Jiang, S.S. Superplastic forming. In Comprehensive Materials Processing, Thirteen Volume Set; Hashmi, S., Van Tyne, C.H., Batalha, G.F., Yilbas, B., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 5, pp. 371–392. [Google Scholar]
- Edalati, K.; Bachmaier, A.; Beloshenko, V.A.; Beygelzimer, Y.; Blank, V.D.; Botta, W.J.; Bryła, K.; Čížek, J.; Divinski, S.; Enikeev, N.A.; et al. Nanomaterials by severe plastic deformation: Review of historical developments and recent advances. Mater. Res. Lett. 2022, 10, 163–256. [Google Scholar] [CrossRef]
- Kumar, P.; Kawasaki, M.; Langdon, T.G. Review: Overcoming the paradox of strength and ductility in ultrafine–grained materials at low temperatures. J. Mater. Sci. 2016, 51, 7–18. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Wu, R.; Zhang, X.; Ma, L. A review on superplastic formation behavior of Al alloys. Adv. Mater. Sci. Eng. 2018, 2018, 7606140. [Google Scholar] [CrossRef] [Green Version]
- Bobruk, E.V.; Murashkin, M.Y.; Kazykhanov, V.U.; Valiev, R.Z. Superplastic behaviour at lower temperatures of high-strength ultrafine-grained Al alloy 7475. Adv. Eng. Mater. 2018, 21, 1800094. [Google Scholar] [CrossRef] [Green Version]
- Bobruk, E.V.; Dolzhenko, P.D.; Murashkin, M.Y.; Valiev, R.Z.; Enikeev, N.A. The microstructure and strength of UFG 6060 Alloy after superplastic deformation at a lower homologous temperature. Materials 2022, 15, 6983. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Salimonenko, D.A.; Tsenev, N.K.; Berbon, P.B.; Langdon, T.G. Observations of high strain rate superplasticity in commercial aluminum alloys with ultrafine grain sizes. Scr. Mater. 1997, 37, 1945–1950. [Google Scholar] [CrossRef]
Cu | Mg | Mn | Si | Fe | Al |
---|---|---|---|---|---|
4.98 ± 0.01 | 1.49 ± 0.01 | 0.73 ± 0.01 | 0.04 ± 0.01 | 0.15 ± 0.01 | balance |
Treatment/ Structural State | T6/Coarse Grained | HPT at RT/UFG | HPT at RT+ SP Deformation at 190 °C/UFG | HPT at RT+ SP Deformation at 240 °C/UFG | HPT at RT+ SP Deformation at 270 °C/UFG |
---|---|---|---|---|---|
HV0.1 | 138 ± 2 | 286 ± 4 | 211 ± 4 | 160 ± 6 | 150 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobruk, E.V.; Murashkin, M.Y.; Ramazanov, I.A.; Kazykhanov, V.U.; Valiev, R.Z. Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains. Materials 2023, 16, 727. https://doi.org/10.3390/ma16020727
Bobruk EV, Murashkin MY, Ramazanov IA, Kazykhanov VU, Valiev RZ. Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains. Materials. 2023; 16(2):727. https://doi.org/10.3390/ma16020727
Chicago/Turabian StyleBobruk, Elena V., Maxim Yu. Murashkin, Ilnar A. Ramazanov, Vil U. Kazykhanov, and Ruslan Z. Valiev. 2023. "Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains" Materials 16, no. 2: 727. https://doi.org/10.3390/ma16020727
APA StyleBobruk, E. V., Murashkin, M. Y., Ramazanov, I. A., Kazykhanov, V. U., & Valiev, R. Z. (2023). Low-Temperature Superplasticity and High Strength in the Al 2024 Alloy with Ultrafine Grains. Materials, 16(2), 727. https://doi.org/10.3390/ma16020727