Solidification Cracking Restraining Mechanism of Al-Cu-Mg-Zn Alloy Welds Using Cold Metal Transfer Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Welding Materials
2.2. Temperature Measurements
2.3. Material Characterization
2.4. Solidification Cracking Susceptibility Analysis
3. Results and Discussion
3.1. Effect of Arc Mode on the Thermal Cycle
3.2. Microstructure of the Al-Cu-Mg-Zn Welds
3.3. Solidification Cracking Susceptibility Analysis
4. Conclusions
- (1).
- The transverse-motion weldability test showed that the critical deformation rate range (from no cracking to fully cracking) shifted down in the coordinate system by switching from MIG arc mode to CMT-based arc mode during AA7075 arc welding with 7055 and 7150 filler wires. The CMT-based welding method reduced the solidification cracking susceptibility of Al-Cu-Mg-Zn alloy welds.
- (2).
- The EPMA results for α-Al dendrites exhibited less micro-segregation in the CMT-based welded sample than in the MIG welded sample. This is because the cooling rate of the welding pool was lower in the CMT-based welding process than in the MIG welding process, which decreased the dendritic segregation through the back diffusion effect.
- (3).
- The T-(fAl)1/2 curve of each weld was calculated under the Scheil and back diffusion modes to analyze the effect of the weld pool’s cooling rate on the solidification cracking susceptibility. The results showed that the α-Al dendrites’ growth was promoted by the low cooling rate in the CMT-based welding process, which enhanced the bridging of adjacent dendrites within the mushy zone at the tail of the welding pool, reducing the solidification cracking susceptibility.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
β | solidification shrinkage |
z | axial direction of dendritic growth |
T | temperature (K) or (°C) |
V | deformation rate (mm/min) |
Vn | the speed when the crack began to extend (mm/min) |
Vf | the speed the crack fully extended (mm/min) |
fAl | fraction α-Al |
fS | fraction solid |
εlocal | local tensile strain within the mushy zone |
t | time (s) |
vZ | velocity of liquid feeding (mm/s) |
TL | liquidus of AA7075 |
TS | solidus of AA7075 |
Lcrack | the length of the propagation crack (mm) |
Lweld | the length of the weld without the crack (mm) |
The ratio of Lcrack/Lweld | the normal length of crack propagation |
References
- Li, Z.; Zhang, Y.; Li, H.; Wang, Y.; Wang, L.; Zhang, Y. Liquation Cracking Susceptibility and Mechanical Properties of 7075 Aluminum Alloy GTAW Joints. Materials 2022, 15, 3651. [Google Scholar] [CrossRef]
- Luo, C.; Li, H.; Zhang, Y.; Li, J.; Wen, Y.; Yang, L. Microstructure and Mechanical Properties of Tungsten Inert Gas Weld Joints of Sprayed and Cast Aluminium–Lithium Alloy. Materials 2020, 13, 3787. [Google Scholar] [CrossRef]
- Na, X.; Wenqing, L.; Liu, Z.; Muthuramalingam, T. Effect of Scandium in Al-Sc and Al-Sc-Zr Alloys under precipitation strengthening mechanism at 3500C Aging. Met. Mater. Int. 2021, 27, 5145–5153. [Google Scholar] [CrossRef]
- Li, H.; Yan, W.; Li, Z.; Mariusz, B.; Senkara, J.; Zhang, Y. Numerical and experimental study of the hot cracking phenomena in 6061/7075 dissimilar aluminum alloy resistance spot welding. J. Manuf. Process. 2021, 77, 794–808. [Google Scholar] [CrossRef]
- Abdollahi, A.; Nganbe, M.; Kabir, A.S. On the elimination of solidification cracks in fusion welding of Al7075 by TiC-nanoparticle enhanced filler metal. J. Manuf. Process. 2022, 81, 828–836. [Google Scholar] [CrossRef]
- Oniglio, N.; Cross, C.E. Effect of weld travel speed on solidification cracking behavior. Part 1: Weld metal characteristics. Int. J. Adv. Manuf. Technol. 2020, 107, 5011–5023. [Google Scholar] [CrossRef]
- Kou, S. Welding Metallurgy; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar]
- Song, Y.B.; Li, L.; Lu, S.M.; Yan, A.; Zhou, D.J. Research status and perspective of 7xxx series aluminum alloys welding. Chin. J. Nonferrous Met. 2018, 28, 10. [Google Scholar]
- Peng, X.Y.; Cao, X.W.; Duan, Y.L. Microstructures and properties of MIG welded joint of 7020 aluminum alloy. Chin. J. Nonferrous Met. 2014, 24, 912–918. [Google Scholar]
- Wang, J.; Chen, X.; Yang, L.; Zhang, G. Sequentially combined thermo-mechanical and mechanical simulation of double-pulse MIG welding of 6061-T6 aluminum alloy sheets. J. Manuf. Process. 2022, 77, 616–631. [Google Scholar] [CrossRef]
- Scotti, F.M.; Teixeira, F.R.; da Silva, L.J.; de Araujo, D.B.; Reis, R.P.; Scotti, A. Thermal management in WAAM through the CMT Advanced process and an active cooling technique. J. Manuf. Process. 2020, 57, 23–35. [Google Scholar] [CrossRef]
- Mezrag, B.; Deschaux-Beaume, F.; Benachour, M. Control of mass and heat transfer for steel/aluminium joining using Cold Metal Transfer process. Sci. Technol. Weld. Join. 2015, 20, 189–198. [Google Scholar] [CrossRef] [Green Version]
- Cadiou, S.; Courtois, M.; Carin, M.; Berckmans, W. 3D heat transfer, fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (CMT-WAAM). Addit. Manuf. 2020, 36, 101541. [Google Scholar] [CrossRef]
- Wang, N.; Mokadem, S.; Rappaz, M.; Kurz, W. Solidification cracking of superalloy single- and bi-crystals. Acta Mater. 2004, 52, 3173–3182. [Google Scholar] [CrossRef]
- Liu, J.; Zeng, P.; Wu, Y.; Kou, S. Determination of tensile strain causing solidification cracking in welding. Sci. Technol. Weld. Join. 2020, 25, 431–437. [Google Scholar] [CrossRef]
- Gawronska, E. Different Techniques of Determination of the Cracking Criterion for Solidification in Casting. Procedia Eng. 2017, 177, 86–91. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, X.; Pan, Y.; Li, H.; Zhou, L.; Zhang, J.; Zhuang, L. The suppression of solidification cracking of Al welds by regulating Zn/Mg ratio. Weld. World 2021, 65, 691–698. [Google Scholar] [CrossRef]
- Liqiong, L.I.; Jin, C. Numerical simulation of hot cracking of 7075 Al alloy by plasma-MIG hybrid welded joint. Electr. Weld. Mach. 2019, 49, 95–100. [Google Scholar]
- Stopyra, W.; Gruber, K.; Smolina, I.; Kurzynowski, T.; Kuźnicka, B. Laser powder bed fusion of AA7075 alloy: Influence of process parameters on porosity and hot cracking. Addit. Manuf. 2020, 35, 101270. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Konovalov, S.; Siddiquee, A.N.; Lu, G.; Pan, X. The Effect of Wire Feeding Speed on Solidification Cracking of CMT Welding for Al-Si Alloys. Metals 2021, 11, 267. [Google Scholar] [CrossRef]
- Soysal, T.; Kou, S. A Simple Test for Solidification Cracking Susceptibility and Filler Metal Effect. Weld. J. 2017, 96, 389S–401S. [Google Scholar]
- Kou, S. A criterion for cracking during solidification. Acta Mater. 2015, 88, 366–374. [Google Scholar] [CrossRef]
- Yan, Z.; Zhao, Y.; Jiang, F.; Chen, S.; Li, F.; Cheng, W.; Ma, X. Metal transfer behaviour of CMT-based step-over deposition in fabricating slant features. J. Manuf. Process. 2021, 71, 147–155. [Google Scholar] [CrossRef]
- Selvi, S.; Vishvaksenan, A.; Rajasekar, E. Cold metal transfer (CMT) technology—An overview. Def. Technol. 2018, 14, 17. [Google Scholar] [CrossRef]
- Nandan, G.; Kumar, G.; Arora, K.S.; Kumar, A. MIG and CMT brazing of aluminum alloys and steel: A review. Mater. Today: Proc. 2022, 56, 481–488. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, H.; Peng, H. The CMT short-circuiting metal transfer process and its use in thin aluminium sheets welding. Mater. Des. 2009, 30, 1850–1852. [Google Scholar] [CrossRef]
- Pang, J.; Hu, S.; Shen, J.; Wang, P.; Liang, Y. Arc characteristics and metal transfer behavior of CMT+P welding process. J. Mater. Process. Technol. 2016, 238, 212–217. [Google Scholar] [CrossRef]
- Frappier, R.; Benoit, A.; Paillard, P.; Baudin, T.; Le Gall, R.; Dupuy, T. Quantitative infrared analysis of welding processes: Temperature measurement during RSW and CMT-MIG welding. Sci. Technol. Weld. Join. 2014, 19, 38–43. [Google Scholar] [CrossRef]
- Azar, A.S. A heat source model for cold metal transfer (CMT) welding. J. Therm. Anal. Calorim. 2015, 122, 741–746. [Google Scholar] [CrossRef]
- Sharp, R.M.; Hellawell, A. Solute distributions at non-planar, solid-liquid growth fronts: Ii. steady-state and transient conditions: No liquid stirring. J. Cryst. Growth 1970, 6, 334–340. [Google Scholar] [CrossRef]
- Liu, J.; Kou, S. Effect of diffusion on susceptibility to cracking during solidification. Acta Mater. 2015, 100, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Duarte, H.P.; Kou, S. Evidence of back diffusion reducing cracking during solidification. Acta Mater. 2017, 122, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Geng, S.; Jiang, P.; Shao, X.; Mi, G.; Wu, H.; Ai, Y.; Wang, C.; Han, C.; Chen, R.; Liu, W.; et al. Effects of back-diffusion on solidification cracking susceptibility of Al-Mg alloys during welding: A phase-field study. Acta Mater. 2018, 160, 85–96. [Google Scholar] [CrossRef]
Si | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al | |
---|---|---|---|---|---|---|---|---|---|
7150 (filler wire) | <0.10 | 2.28 | <0.10 | 2.32 | <0.04 | 6.57 | 0.10 | 0.083 | balance |
7055 (filler wire) | <0.10 | 2.15 | <0.05 | 2.08 | <0.04 | 7.81 | 0.10 | 0.11 | balance |
7075 (base metal) | 0.4 | 1.5 | 0.1 | 2.7 | 0.2 | 5.5 | <0.2 | - | balance |
Current (A) | Voltage (V) | Welding Speed (mm/s) | CMT/P | Shielding Gas | Wire Feed Speed (m/min) | |
---|---|---|---|---|---|---|
MIG | 120 | 15.8 | 5 | / | 15 L/min | 6.2 |
CMT | 120 | 14.6 | 5 | / | 15 L/min | 5.8 |
CMT+P | 120 | 17.4 | 5 | 1:9 | 15 L/min | 5.3 |
Si | Cu | Mn | Mg | Cr | Zn | Ti | Zr | Al | |
---|---|---|---|---|---|---|---|---|---|
7075 + 7150 | <0.10 | 1.88 | <0.10 | 2.47 | <0.04 | 5.87 | 0.10 | 0.083 | balance |
7075 + 7055 | <0.10 | 1.85 | <0.05 | 2.41 | <0.04 | 6.46 | 0.10 | 0.11 | balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ou, L.; Wang, Y.; Li, H.; Bober, M.; Senkara, J.; Zhang, Y. Solidification Cracking Restraining Mechanism of Al-Cu-Mg-Zn Alloy Welds Using Cold Metal Transfer Technique. Materials 2023, 16, 721. https://doi.org/10.3390/ma16020721
Li Z, Ou L, Wang Y, Li H, Bober M, Senkara J, Zhang Y. Solidification Cracking Restraining Mechanism of Al-Cu-Mg-Zn Alloy Welds Using Cold Metal Transfer Technique. Materials. 2023; 16(2):721. https://doi.org/10.3390/ma16020721
Chicago/Turabian StyleLi, Zhuoxin, Lingshan Ou, Yipeng Wang, Hong Li, Mariusz Bober, Jacek Senkara, and Yu Zhang. 2023. "Solidification Cracking Restraining Mechanism of Al-Cu-Mg-Zn Alloy Welds Using Cold Metal Transfer Technique" Materials 16, no. 2: 721. https://doi.org/10.3390/ma16020721
APA StyleLi, Z., Ou, L., Wang, Y., Li, H., Bober, M., Senkara, J., & Zhang, Y. (2023). Solidification Cracking Restraining Mechanism of Al-Cu-Mg-Zn Alloy Welds Using Cold Metal Transfer Technique. Materials, 16(2), 721. https://doi.org/10.3390/ma16020721