Duplex Coating Combing Vanadate-Intercalated Layered Double Hydroxide and Ce-Doped Sol–Gel Layers on Aluminum Alloy for Active Corrosion Protection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Materials
2.2. Synthesis of LDH-V Film by Anion-Exchange Reaction
2.3. Synthesis of LDH-V/SG-Ce Film
2.4. Characterization
3. Results
3.1. Microstructure and Chemical Composition of the Coatings
3.2. Corrosion Behavior of the Coating
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, Y.; Liu, Q.; Jia, Z.; Xing, Y.; Ding, L.; Wang, X. The intergranular corrosion behavior of 6000-series alloys with different Mg/Si and Cu content. Appl. Surf. Sci. 2017, 405, 489–496. [Google Scholar] [CrossRef]
- Lee, W.-S.; Liu, M.-H. Effects of directional grain structure on impact properties and dislocation substructure of 6061-T6 aluminium alloy. Mater. Sci. Technol. 2013, 30, 1719–1727. [Google Scholar] [CrossRef]
- Quevedo, M.C.; Galicia, G.; Mayen-Mondragon, R.; Llongueras, J.G. Role of turbulent flow seawater in the corrosion enhancement of an Al–Zn–Mg alloy: An electrochemical impedance spectroscopy (EIS) analysis of oxygen reduction reaction (ORR). J. Mater. Res. Technol. 2018, 7, 149–157. [Google Scholar] [CrossRef]
- Elabar, D.; La Monica, G.; Santamaria, M.; Di Quarto, F.; Skeldon, P.; Thompson, G. Anodizing of aluminium and AA 2024-T3 alloy in chromic acid: Effects of sulphate on film growth. Surf. Coatings Technol. 2017, 309, 480–489. [Google Scholar] [CrossRef]
- del Olmo, R.; Mohedano, M.; Matykina, E.; Arrabal, R. Permanganate loaded Ca-Al-LDH coating for active corrosion protection of 2024-T3 alloy. Corros. Sci. 2022, 198, 110144. [Google Scholar] [CrossRef]
- Du, J.; Wang, Z.; Wei, Z.; Yao, J.; Song, H. An environmental friendly self-healing coating with Silane/Ce-ZSM-5 zeolite structure for corrosion protection of aluminum alloy. Surf. Coat. Technol. 2022, 436, 128290. [Google Scholar] [CrossRef]
- Mohammadi, I.; Shahrabi, T.; Mahdavian, M.; Izadi, M. A novel corrosion inhibitive system comprising Zn-Al LDH and hybrid sol-gel silane nanocomposite coating for AA2024-T3. J. Alloy. Compd. 2022, 909, 164755. [Google Scholar] [CrossRef]
- Guo, F.; Cao, Y.; Wang, K.; Zhang, P.; Cui, Y.; Hu, Z.; Xie, Z. Effect of the Anodizing Temperature on Microstructure and Tribological Properties of 6061 Aluminum Alloy Anodic Oxide Films. Coatings 2022, 12, 314. [Google Scholar] [CrossRef]
- Liu, N.; Jiang, B.; Ji, Z.; Cui, P.; Wang, Y.; Song, H. Salt spray corrosion and electrochemical corrosion property of anodic oxide films on ADC12 aluminum alloy. Mod. Phys. Lett. B 2021, 36, 2150571. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Z.; Zhang, Z.; Xin, Y.; Fujita, T.; Wei, Y. In situ one-step fabrication of superhydrophobic layered double hydroxide on Al alloys for anti-corrosion. Appl. Surf. Sci. 2022, 593, 2150571. [Google Scholar] [CrossRef]
- Caporali, S.; Fossati, A.; Lavacchi, A.; Perissi, I.; Tolstogouzov, A.; Bardi, U. Aluminium electroplated from ionic liquids as protective coating against steel corrosion. Corros. Sci. 2022, 50, 534–539. [Google Scholar] [CrossRef]
- Han, X.; Li, N.; Wu, B.; Li, D.; Pan, Q.; Wang, R. Microstructural characterization and corrosion resistance evaluation of chromate-phosphate/water-soluble resin composite conversion coating on Al surfaces. Prog. Org. Coat. 2022, 173, 107205. [Google Scholar] [CrossRef]
- Gad, S.M.; Emad, S.; Zhou, X.; Lyon, S.B.; Jin, Z.; Dagwa, I.M. Effectiveness of strontium zinc phosphosilicate on the corrosion protection of AA2198-T851 aluminium alloy in sodium chloride solution. Corros. Sci. 2022, 209, 110725. [Google Scholar] [CrossRef]
- Pancrecious, J.K.; Vineetha, S.; Bill, U.S.; Gowd, E.B.; Rajan, T. Ni-Al polyvanadate layered double hydroxide with nanoceria decoration for enhanced corrosion protection of aluminium alloy. Appl. Clay Sci. 2021, 211, 106199. [Google Scholar] [CrossRef]
- Tedim, J.; Bastos, A.; Kallip, S.; Zheludkevich, M.; Ferreira, M. Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results. Electrochim. Acta 2016, 210, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Pancrecious, J.K.; Gopika, P.; Suja, P.; Ulaeto, S.B.; Gowd, E.B.; Rajan, T. Role of layered double hydroxide in enhancing wear and corrosion performance of self-lubricating hydrophobic Ni-B composite coatings on aluminium alloy. Colloids Surf. A Physicochem. Eng. Asp. 2021, 634, 128017. [Google Scholar] [CrossRef]
- Saleh, T.A.; Haruna, K.; Nur, M.M.; Alharbi, B. Synthesis of Amine Grafted Poly (Acrylic-Maleic) as an efficient inhibitor against stainless steel corrosion in a highly saline medium. Prog. Org. Coat. 2022, 170, 106974. [Google Scholar] [CrossRef]
- Lin, K.; Luo, X.; Pan, X.; Zhang, C.; Liu, Y. Enhanced Corrosion Resistance of LiAl-Layered Double Hydroxide (LDH) Coating Modified with a Schiff Base Salt on Aluminum Alloy by One Step in-Situ Synthesis at Low Temperature. Appl. Surf. Sci. 2019, 463, 1085–1096. [Google Scholar] [CrossRef]
- Liu, J.; Shi, H.; Yu, M.; Du, R.; Rong, G.; Li, S. Effect of divalent metal ions on durability and anticorrosion performance of layered double hydroxides on anodized 2A12 aluminum alloy. Surf. Coat. Technol. 2019, 373, 56–64. [Google Scholar] [CrossRef]
- Shchukin, D.G. Container-based multifunctional self-healing polymer coatings. Polym. Chem. 2013, 4, 4871–4877. [Google Scholar] [CrossRef]
- Rani, K.M.; Palanisamy, P.N. Synthesis and Characterization of Mesoporous, Nanostructured Zinc Aluminium Carbonate Layered Double Hydroxides (ZAC-LDHs) and Its Calcined Product (CZA-LDH). J. Inorg. Organomet. Polym. Mater. 2018, 28, 1127–1135. [Google Scholar] [CrossRef]
- Vieira, D.E.L.; Salak, A.N.; Ferreira, M.G.S.; Vieira, J.M.; Brett, C.M.A. Ce-substituted Mg-Al layered double hydroxides to prolong the corrosion protection lifetime of aluminium alloys. Appl. Surf. Sci. 2021, 573, 151527. [Google Scholar] [CrossRef]
- Liu, G.; Lu, X.; Zhang, X.; Zhang, T.; Wang, F. Improvement of corrosion resistance of PEO coatings on Al alloy by formation of ZnAl layered double hydroxide. Surf. Coat. Technol. 2022, 441, 128528. [Google Scholar] [CrossRef]
- Ayemi, G.; Marcelin, S.; Thérias, S.; Leroux, F.; Normand, B. Synergy effect between layer double hydroxide (LDH) and EDDS for corrosion inhibition of carbon steel. Appl. Clay Sci. 2022, 222, 106497. [Google Scholar] [CrossRef]
- Li, J.; Lin, K.; Luo, X.; Zhang, H.; Cheng, Y.F.; Li, X.; Liu, Y. Enhanced corrosion protection property of Li-Al layered double hydroxides (LDHs) film modified by 2-guanidinosuccinic acid with excellent self-repairing and self-antibacterial properties. Appl. Surf. Sci. 2019, 480, 384–394. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Li, Y.; Yu, M.; Li, S.; Xue, B. Fabrication of inhibitor anion-intercalated layered double hydroxide host films on aluminum alloy 2024 and their anticorrosion properties. J. Coat. Technol. Res. 2015, 12, 293–302. [Google Scholar] [CrossRef]
- Zheludkevich, M.; Poznyak, S.; Rodrigues, L.; Raps, D.; Hack, T.; Dick, L.F.P.; Nunes, T.; Ferreira, M.G.S. Active protection coatings with layered double hydroxide nanocontainers of corrosion inhibitor. Corros. Sci. 2010, 52, 602–611. [Google Scholar] [CrossRef]
- Hao, L.; Yan, T.; Zhang, Y.; Zhao, X.; Lei, X.; Xu, S.; Zhang, F. Fabrication and anticorrosion properties of composite films of silica/layered double hydroxide. Surf. Coat. Technol. 2017, 326, 200–206. [Google Scholar] [CrossRef]
- del Olmo, R.; Tiringer, U.; Milošev, I.; Visser, P.; Arrabal, R.; Matykina, E.; Mol, J. Hybrid sol-gel coatings applied on anodized AA2024-T3 for active corrosion protection. Surf. Coat. Technol. 2021, 419, 127251. [Google Scholar] [CrossRef]
- Yasakau, K.; Kuznetsova, A.; Kallip, S.; Starykevich, M.; Tedim, J.; Ferreira, M.; Zheludkevich, M. A novel bilayer system comprising LDH conversion layer and sol-gel coating for active corrosion protection of AA2024. Corros. Sci. 2018, 143, 299–313. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Ren, Y.; Wang, H.; Chen, F. Double-doped LDH films on aluminum alloys for active protection. Mater. Lett. 2017, 192, 33–35. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhang, Y.; Yu, M.; Liu, J. Fabrication of superhydrophobic layered double hydroxides films with different metal cations on anodized aluminum 2198 alloy. Mater. Lett. 2015, 142, 137–140. [Google Scholar] [CrossRef]
- Smalenskaite, A.; Kaba, M.M.; Grigoraviciute-Puroniene, I.; Mikoliunaite, L.; Zarkov, A.; Ramanauskas, R.; Morkan, I.A.; Kareiva, A. Sol–Gel Synthesis and Characterization of Coatings of Mg-Al Layered Double Hydroxides. Materials 2019, 12, 3738. [Google Scholar] [CrossRef] [Green Version]
- Tedim, J.; Zheludkevich, M.; Bastos, A.; Salak, A.; Lisenkov, A.; Ferreira, M. Influence of preparation conditions of Layered Double Hydroxide conversion films on corrosion protection. Electrochim. Acta 2013, 117, 164–171. [Google Scholar] [CrossRef]
- Markova-Velichkova, M.; Iordanova, R.; Dimitriev, Y. Glass Formation in the V2O5-MoO3-ZnO System. Phys. Status Solidi C 2011, 8, 3159–3162. [Google Scholar] [CrossRef]
- Kim, J.; Wong, P.; Wong, K.; Sodhi, R.; Mitchell, K. Adsorption of BTSE and γ-GPS organosilanes on different microstructural regions of 7075-T6 aluminum alloy. Appl. Surf. Sci. 2007, 253, 3133–3143. [Google Scholar] [CrossRef]
- Yu, M.; Liu, Y.; Liu, J.; Li, S.; Xue, B.; Zhang, Y.; Yin, X. Effects of cerium salts on corrosion behaviors of Si–Zr hybrid sol–gel coatings. Chin. J. Aeronaut. 2015, 28, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Al-Saadi, S.; Raman, R.S.; Panter, C. A Two-Step Silane Coating Incorporated with Quaternary Ammonium Silane for Mitigation of Microbial Corrosion of Mild Steel. ACS Omega 2021, 6, 16913–16923. [Google Scholar] [CrossRef]
- Park, E.S.; Ro, H.W.; Nguyen, C.V.; Jaffe, R.L.; Yoon, D.Y. Infrared Spectroscopy Study of Microstructures of Poly(silsesquioxane)s. Chem. Mater. 2008, 20, 1548–1554. [Google Scholar] [CrossRef]
- Bouali, A.C.; Serdechnova, M.; Yasakau, K.A.; Lutz, A.; Wiese, G.; Terryn, H.; Ferreira, M.G.S.; Zheludkevich, M.L. The Role of Cu-Based Intermetallic on the Direct Growth of a ZnAl LDH Film on AA2024. J. Electrochem. Soc. 2022, 169, 081501. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, L.; Tang, A.; Ma, Y.; Song, G.L.; Zheng, D.; Jiang, B.; Atrens, A.; Pan, F. Active Corrosion Protection by a Smart Coating Based on a MgAl-Layered Double Hydroxide on a Cerium-Modified Plasma Electrolytic Oxidation Coating on Mg Alloy AZ31. Corros. Sci. 2018, 139, 370–382. [Google Scholar] [CrossRef] [Green Version]
- Iannuzzi, M.; Kovac, J.; Frankel, G. A study of the mechanisms of corrosion inhibition of AA2024-T3 by vanadates using the split cell technique. Electrochim. Acta 2007, 52, 4032–4042. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Wang, X.; Tang, Q.; Chen, S.; Zhu, Z.; Xu, L. Surface characterization of growth process for cerium conversion coating on magnesium alloy and its anticorrosion mechanism. Surf. Interface Anal. 2014, 46, 556–563. [Google Scholar] [CrossRef]
- Hurley, B.L.; Qiu, S.; Buchheit, R.G. Raman Spectroscopy Characterization of Aqueous Vanadate Species Interaction with Aluminum Alloy 2024-T3 Surfaces. J. Electrochem. Soc. 2011, 158, C125–C131. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Shi, J.; Wang, X.; Liu, D.; Xu, H. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates. Appl. Surf. Sci. 2016, 376, 161–171. [Google Scholar] [CrossRef]
- Ralston, K.D.; Young, T.L.; Buchheit, R.G. Electrochemical Evaluation of Constituent Intermetallics in Aluminum Alloy 2024-T3 Exposed to Aqueous Vanadate Inhibitors. J. Electrochem. Soc. 2009, 156, C135–C146. [Google Scholar] [CrossRef]
- Li, J.; Hurley, B.; Buchheit, R. Inhibition Performance Study of Vanadate on AA2024-T3 at High Temperature by SEM, FIB, Raman and XPS. J. Electrochem. Soc. 2015, 162, C219–C227. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; van Ooij, W.J. Corrosion Protection of Metals by Water-Based Silane Mixtures of Bis-[Trimethoxysilylpropyl]Amine and Vinyltriacetoxysilane. Prog. Org. Coat 2004, 49, 42–53. [Google Scholar] [CrossRef]
- Kharitonov, D.S.; Örnek, C.; Claesson, P.M.; Sommertune, J.; Zharskii, I.M.; Kurilo, I.I.; Pan, J. Corrosion Inhibition of Aluminum Alloy AA6063-T5 by Vanadates: Microstructure Characterization and Corrosion Analysis. J. Electrochem. Soc. 2018, 165, C116–C126. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, Y.; Yu, M.; Li, S.; Xue, B.; Yin, X. Influence of Embedded ZnAlCe-NO3- Layered Double Hydroxides on the Anticorrosion Properties of Sol-Gel Coatings for Aluminum Alloy. Prog. Org. Coat. 2015, 81, 93–100. [Google Scholar] [CrossRef]
- Rodič, P.; Milošev, I. Corrosion Inhibition of Pure Aluminium and Alloys AA2024-T3 and AA7075-T6 by Cerium(III) and Cerium(IV) Salts. J. Electrochem. Soc. 2015, 163, C85–C93. [Google Scholar] [CrossRef]
- Hill, J.-A.; Markley, T.; Forsyth, M.; Howlett, P.C.; Hinton, B.R. Corrosion inhibition of 7000 series aluminium alloys with cerium diphenyl phosphate. J. Alloy. Compd. 2011, 509, 1683–1690. [Google Scholar] [CrossRef]
Title 1 | Ecorr (V) | Icorr (A/cm2) | ba/(V/dec) | bc/(V/dec) |
---|---|---|---|---|
Blank | −0.624 | 1.457 × 10−6 | 0.246 | 0.324 |
LDH-N | −0.576 | 3.570 × 10−7 | 0.263 | 0.279 |
LDH-V | −0.587 | 0.795 × 10−7 | 0.227 | 0.235 |
LDH-V/SG-Ce | −0.554 | 1.920 × 10−8 | 0.342 | 0.348 |
Sample | LDH-N | LDH-V | LDH-V/SG-Ce | Immersing 2 Days | Immersing 14 Days |
---|---|---|---|---|---|
Rs/Ω cm2 | 26.42 | 7.34 | 28.18 | 60.77 | 67.76 |
CPEsg/μF cm−2 | / | / | 3.63 × 10−8 | 4.83 × 10−10 | 6.63 × 10−10 |
Rsg/Ω cm2 | / | / | 166.10 | 355.01 | 84.59 |
CPE2/μF cm−2 | / | 2.89 × 10−5 | / | / | / |
R2/Ω cm2 | / | 5125 | / | / | / |
CPEl/μF cm−2 | 1.92 × 10−5 | 1.68 × 10−5 | 1.05 × 10−5 | 7.19 × 10−7 | 1.26 × 10−6 |
Rl/Ω cm2 | 53.86 | 92.01 | 2666 | 1743 | 1851 |
CPEdl/μF cm−2 | 1.70 × 10−4 | 5.63 × 10−5 | 3.43 × 10−6 | 2.14 × 10−5 | 9.46 × 10−6 |
Rct/Ω cm2 | 14,951 | 69,257 | 146,150 | 853,230 | 889,010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Zhao, X.; Zhang, Z.; Yuan, Y.; Kong, W.; Zhang, Y. Duplex Coating Combing Vanadate-Intercalated Layered Double Hydroxide and Ce-Doped Sol–Gel Layers on Aluminum Alloy for Active Corrosion Protection. Materials 2023, 16, 775. https://doi.org/10.3390/ma16020775
Wei K, Zhao X, Zhang Z, Yuan Y, Kong W, Zhang Y. Duplex Coating Combing Vanadate-Intercalated Layered Double Hydroxide and Ce-Doped Sol–Gel Layers on Aluminum Alloy for Active Corrosion Protection. Materials. 2023; 16(2):775. https://doi.org/10.3390/ma16020775
Chicago/Turabian StyleWei, Kai, Xuejie Zhao, Zhe Zhang, Yujie Yuan, Wenquan Kong, and You Zhang. 2023. "Duplex Coating Combing Vanadate-Intercalated Layered Double Hydroxide and Ce-Doped Sol–Gel Layers on Aluminum Alloy for Active Corrosion Protection" Materials 16, no. 2: 775. https://doi.org/10.3390/ma16020775
APA StyleWei, K., Zhao, X., Zhang, Z., Yuan, Y., Kong, W., & Zhang, Y. (2023). Duplex Coating Combing Vanadate-Intercalated Layered Double Hydroxide and Ce-Doped Sol–Gel Layers on Aluminum Alloy for Active Corrosion Protection. Materials, 16(2), 775. https://doi.org/10.3390/ma16020775