Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis
Abstract
:1. Introduction
Composition of Products | Reagents | Crystallite Size (nm) | Particle Size (nm) | Ref. | |
---|---|---|---|---|---|
CaO | CaCl2 | NaOH | 48 | 150–200 | [69,70,71] |
CdO | CdCl2 | NaOH | 40 | 200 | [72] |
CdO | CdCl2 | NaOH | 11–24 | 70 | [73] |
CoO | CoCl2 | NaOH | 50 | 224 | [74] |
CoO | CoCl2 | NaOH | 650 | [75] | |
CuO | CuCl2 | NaOH | ≈ 200 | [76] | |
CuO | CuCl2 | NaOH | 25–66 | - | [77] |
CuO | CuCl2 | NaOH | 20 | 50 | [78] |
Fe2O3 | FeCl3 | NaOH | 19 | 12–24 | [79] |
NiO | NiCl2 | NaOH | 25–120 | [80,81,82,83] | |
MgO | MgCl2 | NaOH | 30–70 | 150 | [84] |
SnO2 | SnCl2 | NaOH | [85] | ||
ZnO | ZnCl2 | NaOH | 16–22 | 300–500 | [86] |
2. Theoretical Calculations of the Formation of Metal Oxide Nano-Particles through Precipitation-Calcination Method Reacting Metal Chlorides with NaOH
- NaOH is a bulk and cheap reagent.
- NaOH has a good solubility in water: 100 g/100 g of H2O at 25 °C. Using its molar mass of 40.0 g/mol, its solubility in water can be re-calculated to molarities as follows: it changes from 10.5 M at 0 °C to 86.8 M at 100 °C. So, a 2 M NaOH solution is a stable and cheap reagent.
- One of the products of the reaction of metal chlorides with NaOH is NaCl. From the initial 2 M NaOH solution, a maximum of 1 M NaCl solution is formed during the reaction with the equal volume of metal chloride solution. Its solubility in water is 36 g/100 g of H2O at 25 °C. From its molar mass of 58.4 g/mol, its solubility can be re-calculated to 6.10 M at 0 °C and 6.70 M at 100 °C in water. Therefore, the maximum concentration of 1 M NaCl that can form during the technology remains in the solution even if the effects of other chlorides are taken into account.
- During the reaction, NaOH is converted into NaCl; it can be done efficiently, if the difference between their molar standard Gibbs energies is as negative as possible. The molar standard Gibbs energy of formation of NaCl is −383.9 kJ/mol (300 K) and −374.6 kJ/mol (400 K). The molar standard Gibbs energy of formation of NaOH is −379.5 kJ/mol (300 K) and −363.8 kJ/mol (400 K). Thus, the molar standard Gibbs energy change accompanying the transformation of NaOH into NaCl is −4.4 kJ/mol (300 K) and −10.8 kJ/mol (400 K). This negative standard molar Gibbs energy change will help to convert metal chlorides into their hydroxides or oxides.
2.1. Condition I Existence and Sufficient Solubility of Stable Chloride for Given Metal
2.2. Condition II Spontaneous Reaction between Metal Chloride and NaOH
- (i).
- for M(x) = Ba(II), Ca(II), Li(I), Mg(II), Sr(II) their hydroxides are preferred by nature, so they passed condition II as hydroxides;
- (ii).
- for M(x) = Fe(III) its oxide is preferred by nature; the same conclusion can be probably reached for M(x) = In(III), La(III), Mn(II), Nd(III), Ni(II), Pr(III), Sb(III), Sm(III), Sn(II), Y(III) and Zn(II), as the standard molar Gibbs energies of formation of their hydroxides are not given by Barin, so they passed condition II as oxides. Note: there are other literature sources for thermodynamic properties of different hydroxides, but in contrary to the compilation of Barin they do not form a coherent system with the thermodynamic properties of other compounds (chlorides, oxides, etc.), so they are not used here for two reasons: (i) different sources show a too large difference, (ii) most of them lead to the same conclusion that an oxide is preferred;
- (iii).
- for M(x) = Al(III), Be(II), Cd(II), Co(II), Cu(II), Fe(II) the difference between the standard molar Gibbs energies accompanying reactions (3)–(5) are so small that much probably their mixture is formed, so they passed condition II as a mixture of oxides and hydroxides;
- (iv).
- for M(x) = Cs(I), K(I), Na(I), Rb(I), Pt(IV) nor their oxide, neither their hydroxide can form, i.e., these five metal ions are excluded from further consideration;
- (v).
- M(x) = Au(III) is a special case, as by reacting AuCl3 and NaOH gold nano-particles precipitate in one step by the reaction: , accompanied by the standard molar Gibbs energy change of −321.1 kJ/mol, being more negative by −39 kJ/mol compared to reactions (3) and (5), see Table 3 (for experimental proof see [90,91]). That is why M(x) = Au(III) is also excluded from further consideration, as it cannot provide oxide nano-particles, mostly because Au2O3 is the only oxide in Table 3 that has positive standard molar Gibbs energy of formation. Finally, conditions I-II are obeyed only by 29 − 5 − 1 = 23 metal ions of 22 metals.
2.3. Condition III Fast Precipitation of Metal Hydroxides or Metal Oxides
- metal ions M(x) = Ca(II) and Mg(II) pass conditions I-II-III as hydroxides;
- metal ions M(x) = Fe(III), In(III), La(III), Mn(II), Nd(III), Ni(II), Pr(III), Sb(III), Sm(III), Sn(II), Y(III) and Zn(II) pass conditions I-II-III as oxides;
- metal ions M(x) = Al(III), Be(II), Cd(II), Co(II), Cu(II) and Fe(II) pass conditions I-II-III as a mixture of their oxides and hydroxides.
2.4. Condition IV the Ability of Metal Hydroxides to Convert into Metal Oxides upon Calcination at a Reasonably Low Temperature
2.5. Additional Condition V: Ability of Metal Oxides to Capture CO2 from Air
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassanzadeh-Tabrizi, S.; Taheri-Nassaj, E. Economical synthesis of Al2O3 nanopowder using a precipitation method. Mater. Lett. 2009, 63, 2274. [Google Scholar] [CrossRef]
- Li, F.-T.; Ran, J.; Jaroniec, M.; Qiao, S.Z. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion. Nanoscale 2015, 7, 17590. [Google Scholar] [CrossRef]
- Devi, V.S.; Athika, M.; Duraisamy, E.; Prasath, A.; Sharma, A.S.; Elumalai, P. Facile sol-gel derived nanostructured spinel Co3O4 as electrode material for high-performance supercapattery and lithium-ion storage. J. Energy Storage 2019, 25, 100815. [Google Scholar] [CrossRef]
- Stankic, S.; Suman, S.; Haque, F.; Vidic, J. Pure and multi metal oxide nanoparticles: Synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 2016, 14, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, S.-N.; Wei, C.; Zhu, Z.-Z.; Hou, Y.; Venkatraman, S.S.; Xu, Z. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chin. Phys. B 2014, 23, 037503. [Google Scholar] [CrossRef]
- Bachelier, J.; Aboulayt, A.; Lavalley, J.C.; Legendre, O.; Luck, F. Activity of different metal oxides towards COS hydrolysis. Effect of SO2 and sulfation. Catal. Today 1993, 17, 55–62. [Google Scholar] [CrossRef]
- Panasyuk, G.P.; Kozerozhets, I.V.; Semenov, E.A.; Azarova, L.A.; Belan, V.N.; Danchevskaya, M.N. A New Method for producing a nanosized γ-Al2O3 powder. Russ. J. Inorg. Chem. 2018, 63, 1303. [Google Scholar] [CrossRef]
- Ziva, A.Z.; Suryana, Y.K.; Kurniadianti, Y.S.; Nandiyanto, A.B.D.; Kurniawan, T. Recent Progress on the Production of Aluminum Oxide (Al2O3) Nanoparticles: A Review. Mech. Eng. Soc. Ind. 2021, 1, 54. [Google Scholar] [CrossRef]
- Miyazaki, T.; Kuroda, Y.; Morishige, K.; Kittaka, S.; Umemura, J.; Takenaka, T.; Morimoto, T. Interaction of the surface of BeO with water: In connection with the two-dimensional condensation of water. J. Colloid Interface Sci. 1985, 106, 154. [Google Scholar] [CrossRef]
- Selvaraj, V.; Morri, B.; Nair, L.M.; Krishnan, H. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J. Therm. Anal. Calorim. 2019, 137, 1527–1536. [Google Scholar] [CrossRef]
- Altunal, V.; Guckan, V.; Ozdemir, A.; Yegingil, Z. A calcination study on BeO ceramics for radiation dosimetry. Mater. Res. Bull. 2020, 130, 110921. [Google Scholar] [CrossRef]
- Quirk, J.F.; Mosley, N.B.; Duckworth, W.H. Characterization of Sinterable Oxide Powders: I, BeO. J. Am. Ceram. Soc. 1957, 40, 416–419. [Google Scholar] [CrossRef]
- Butt, A.R.; Ejaz, S.; Baron, J.C.; Ikram, M.; Ali, S. CaO Nanoparticles As A Potential Drug Delivery Agent For Biomedical Apkplications. Dig. J. Nanomater. Biostruct. (DJNB) 2015, 10, 799–809. [Google Scholar]
- El-Dafrawy, S.M.; Youssef, H.M.; Toamah, W.O.; El-Defrawy, M.M. Synthesis of Nano-CaO Particles and Its Application for the Removal of Copper (II), Lead (II), Cadmium (II) and Iron (III) from Aqueous Solutions. Egypt. J. Chem. 2015, 58, 579–589. [Google Scholar]
- Tang, Z.-X.; Claveau, D.; Corcuff, R.; Belkacemi, K.; Arul, J. Preparation of nano-CaO using thermal-decomposition method. Mater. Lett. 2008, 62, 2096. [Google Scholar] [CrossRef]
- Hlaing, N.N.; Sreekantan, S.; Othmana, R.; Punga, S.-Y.; Hinode, H.; Kurniawanb, W.; Thantc, A.A.; Mohamedd, A.R.; Salimee, C. Sol-gel hydrothermal synthesis of microstructured CaO-based adsorbents for CO2 capture. RSC Adv. 2015, 5, 6051–6060. [Google Scholar] [CrossRef]
- Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A Novel Strategy for Determination of Paracetamol in the Presence of Morphine Using a Carbon Paste Electrode Modified with CdO Nanoparticles and Ionic Liquids. Electroanalysis 2015, 28, 366. [Google Scholar] [CrossRef]
- Balamurugan, S.; Balu, A.; Usharani, K.; Suganya, M.; Anitha, S.; Prabha, D.; Ilangovan, S. Synthesis of CdO nanopowders by a simple soft chemical method and evaluation of their antimicrobial activities. Pac. Sci. Rev. A Nat. Sci. Eng. 2016, 18, 228. [Google Scholar] [CrossRef]
- Ranjithkumar, R.; Irudayaraj, A.A.; Jayakumar, G.; Raj, A.D.; Karthick, S.; Vinayagamoorthy, R. Synthesis and Properties of CdO and Fe doped CdO Nanoparticles. Mater. Today Proc. 2016, 3, 1378. [Google Scholar] [CrossRef]
- Kaveh, S.; Norouzi, B.; Nami, N.; Mirabi, A. Phytochemical synthesis of CdO nanoparticles: Fabrication of electrochemical sensor for quantification of cefixime. J. Mater. Sci. Mater. Electron. 2021, 32, 8932. [Google Scholar] [CrossRef]
- Athar, T.; Shafi, S.S.M.; Khan, A.A. Soft Chemical Process for Synthesis of CdO Nanoparticles. Mater. Focus 2014, 3, 397. [Google Scholar] [CrossRef]
- Thovhogi, N.; Park, E.; Manikandan, E.; Maaza, M.; Gurib-Fakim, A. Physical properties of CdO nanoparticles synthesized by green chemistry via Hibiscus Sabdariffa flower extract. J. Alloys Compd. 2015, 655, 314–320. [Google Scholar] [CrossRef]
- Somasundaram, G.; Rajan, J.; Sangaiya, P.; Dilip, R. Hydrothermal synthesis of CdO nanoparticles for photocatalytic and antimicrobial activities. Results Mater. 2019, 4, 100044. [Google Scholar] [CrossRef]
- Benchettara, A.; Benchettara, A. Electrochemical Sensor Based on Nanoparticles of Cobalt Oxides for Determination of Glucose. Mater. Today: Proc. 2015, 2, 4212–4216. [Google Scholar] [CrossRef]
- Sinkó, K.; Szabó, G.; Zrínyi, M. Liquid-phase synthesis of cobalt oxide nanoparticles. J. Nanosci. Nanotechnol. 2011, 11, 4127–4135. [Google Scholar] [CrossRef] [PubMed]
- Mammadyarova, S. Synthesis and Characterization of Cobalt Oxide Nanostructures. A Brief Review. Azerbaijan Chem. J. 2021, 1841, 80–93. [Google Scholar] [CrossRef]
- Shende, R.; Subramanian, S.; Hasan, S.; Apperson, S.; Thiruvengadathan, R. Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles Propellants. Explos. Pyrotech.Int. J. Deal. Sci. Technol. Asp. Ener. Mat. 2008, 33, 122–130. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Z.; Liu, Y.; Xu, C.; Zheng, C.; Wang, G. A simple wet-chemical synthesis and characterization of CuO nanorods. Appl. Phys. A 2003, 76, 417–420. [Google Scholar] [CrossRef]
- Armelao, L.; Barreca, D.; Bertapelle, M.; Bottaro, G.; Sada, C.; Tondello, E. A sol–gel approach to nanophasic copper oxide thin films. Thin Solid Films 2003, 442, 48–52. [Google Scholar] [CrossRef]
- Al-Douri, Y.; Amrane, N.; Johan, M.R. Annealing temperature effect on structural and optical investigations of Fe2O3 nanostructure. J. Mater. Res. Technol. 2019, 8, 2164–2169. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, L.; Wang, B.; Ma, Y. Enhanced electrocatalytic methanol oxidation properties by photo-assisted Fe2O3 nanoplates. Int. J. Hydrogen Energy 2019, 44, 13214–13220. [Google Scholar] [CrossRef]
- Hong, J.; Yang, F.; Sun, Z. Hexagonal bi-pyramid α-Fe2O3 microcrystals: Unusual formation, characterization and application for gas sensing. J. Alloy. Compd. 2020, 889, 161515. [Google Scholar] [CrossRef]
- Cao, S.W.; Zhu, Y.; Ma, M.; Li, A.; Zhang, L. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe2O3: Preparation and potential application in drug delivery. J. Phys. Chem. C 2008, 112, 1851–1856. [Google Scholar] [CrossRef]
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef] [Green Version]
- Fouad, D.E.; Zhang, C.; El-Didamony, H.; Yingnan, L.; Mekuria, T.D.; Shah, A.H. Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate precursor. Results Phys. 2019, 12, 1253–1261. [Google Scholar] [CrossRef]
- Abinaya, S.; Kavitha, H.P.; Prakash, M.; Muthukrishnaraj, A. Green synthesis of magnesium oxide nanoparticles and its applications: A review. Sustain. Chem. Pharm. 2021, 19, 100368. [Google Scholar] [CrossRef]
- Hassan, S.E.-D.; Fouda, A.; Saied, E.; Farag, M.M.S.; Eid, A.M.; Barghoth, M.G.; Awad, M.A.; Hamza, M.F. Rhizopus oryzae-mediated green synthesis of magnesium oxide nanoparticles (MgO-NPs): A promising tool for antimicrobial, mosquitocidal action, and tanning effluent treatment. J. Fungi 2021, 7, 372. [Google Scholar] [CrossRef]
- Kondakov, D.; Danilov, V.P. Manufacturing of magnesium hydroxide from natural magnesium chloride sources. Theor. Found. Chem. Eng. 2007, 41, 572–576. [Google Scholar] [CrossRef]
- Imani, M.M.; Safaei, M. Optimized Synthesis of Magnesium Oxide Nanoparticles as Bactericidal Agents. J. Nanotechnol. 2019, 2019, 6063832. [Google Scholar] [CrossRef] [Green Version]
- Wahab, R.; Ansari, S.; Dar, M.; Kim, Y.; Shin, H.S. Synthesis of Magnesium Oxide Nanoparticles by Sol-Gel Process Synthesis of magnesium oxide nanoparticles by sol-gel process. Mat. Sci. Forum 2007, 558, 983–986. [Google Scholar] [CrossRef]
- Nemade, K.R.; Waghuley, S.A. Synthesis of MgO Nanoparticles by Solvent Mixed Spray Pyrolysis Technique for Optical Investigation. Int. J. Met. 2014, 2014, 1–4. [Google Scholar] [CrossRef]
- Athar, T.; Hakeem, A.; Ahmed, W. Synthesis of MgO Nanopowder via Non Aqueous Sol–Gel Method. Adv. Sci. Lett. 2012, 7, 27. [Google Scholar] [CrossRef]
- Mirzaei, H.; Davoodnia, A. Microwave assisted sol-gel synthesis of MgO nanoparticles and their catalytic activity in the synthesis of hantzsch 1,4-Dihydropyridines. Chin. J. Catal. 2012, 33, 1502–1507. [Google Scholar] [CrossRef]
- Sahib, R.S.; Naser, J.A. Preparation, Characterization and Surface Area Properties of Manganese Oxide Nanoparticles. Ann. Rom. Soc. Cell Biol. 2021, 25, 2962–2969. [Google Scholar]
- Ghosh, M.; Biswas, K.; Sundaresan, A.; Rao, C.N.R. MnO and NiO nanoparticles: Synthesis and magnetic properties. J. Mater. Chem. 2005, 16, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Niederberger, M. Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc. Chem. Res. 2007, 40, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Liang, Z.-H.; Zhu, Y.-J.; Hu, X.-L. β-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets. J. Phys. Chem. B 2004, 108, 3488–3491. [Google Scholar] [CrossRef]
- Mariama, A.A.; Kashifb, M.; Arokiyarajc, S.; Bououdinad, M.; Sankaracharyuluf, M.G.V.; Jayachandrang, M.; Hashimb, U. Bio-synthesis of NiO and Ni nanoparticles and their characterization. Dig. J. Nanomater. Biostruct. 2014, 9, 1007–1019. [Google Scholar]
- Helan, V.; Prince, J.J.; Al-Dhabi, N.A.; Arasu, M.V.; Ayeshamariam, A.; Madhumitha, G.; Roopan, S.M.; Jayachandran, M. Neem leaves mediated preparation of NiO nanoparticles and its magnetization, coercivity and antibacterial analysis. Results Phys. 2016, 6, 712–718. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Wang, W.; Li, X.; Zhao, J.; Ma, J.; Liu, Y.; Lu, G. Preparation of NiO nanoparticles in microemulsion and its gas sensing performance. Mater. Lett. 2012, 68, 168–170. [Google Scholar] [CrossRef]
- da Silva, M.R.; Scalvi, L.V.A.; Dall’Antonia, L.H.; dos Santos, D.I. Deposition and photo-induced electrical resistivity of dip-coated NiO thin films from a precipitation process. J. Mater. Sci. Mater. Electron. 2012, 24, 1823–1831. [Google Scholar] [CrossRef]
- Bera, P.; Rajamathi, M.; Hegde, M.S.; Kamath, P.V. Thermal behaviour of hydroxides, hydroxysalts and hydrotalcites. Bull. Mater. Sci. 2000, 23, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Salavati-Niasari, M.; Mohandes, F.; Davar, F.; Mazaheri, M.; Monemzadeh, M.; Yavarinia, N. Preparation of NiO nanoparticles from metal-organic frameworks via a solid-state decomposition route. Inorg. Chim. Acta 2009, 362, 3691–3697. [Google Scholar] [CrossRef]
- Jeevanandam, P.; Koltypin, Y.; Gedanken, A. Synthesis of Nanosized α-Nickel Hydroxide by a Sonochemical Method. Nano Lett. 2001, 1, 263–266. [Google Scholar] [CrossRef]
- Cheng, B.; Le, Y.; Cai, W.; Yu, J. Synthesis of hierarchical Ni(OH)2 and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water. J. Hazard. Mater. 2011, 185, 889. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Gu, C.-D.; Wang, X.-L.; Tu, J.-P. Fast synthesis and optical property of SnO nanoparticles from choline chloride-based ionic liquid. J. Nanopart. Res. 2014, 16, 2288. [Google Scholar] [CrossRef]
- Jaśkaniec, S.; Kavanagh, S.R.; Coelho, J.; Ryan, S.; Hobbs, C.; Walsh, A.; Scanlon, D.O.; Nicolosi, V. Solvent engineered synthesis of layered SnO for high-performance anodes. NPJ 2D Mater. Appl. 2021, 5, 27. [Google Scholar] [CrossRef]
- Boroojerdian, P. Structural and Optical Study of SnO Nanoparticles Synthesized Using Microwave—Assisted Hydrothermal Route. Int. J. Nanosci. Nanotechnol. 2013, 9, 95–100. [Google Scholar]
- Dias, J.S.; Batista, F.R.M.; Bacani, R.; Triboni, E.R. Structural characterization of SnO nanoparticles synthesized by the hydrothermal and microwave routes. Sci. Rep. 2020, 10, 9446. [Google Scholar] [CrossRef]
- Moeen, S.; Ikram, M.; Haider, A.; Haider, J.; Ul-Hamid, A.; Nabgan, W.; Shujah, T.; Naz, M.; Shahzadi, I. Comparative Study of Sonophotocatalytic, Photocatalytic, and Catalytic Activities of Magnesium and Chitosan-Doped Tin Oxide Quantum Dots. ACS Omega 2022, 7, 46428. [Google Scholar] [CrossRef]
- Choi, K.; Kang, T.; Oh, S.-G. Preparation of disk shaped ZnO particles using surfactant and their PL properties. Mater. Lett. 2012, 75, 240. [Google Scholar] [CrossRef]
- Hakim, A.; Marliza, T.S.; Abu Tahari, N.M.; Isahak, R.W.N.W.; Yusop, R.M.; Hisham, W.M.M.; Yarmo, A.M. Studies on CO2 Adsorption and Desorption Properties from Various Types of Iron Oxides (FeO, Fe2O3, and Fe3O4). Ind. Eng. Chem. Res. 2016, 55, 7888–7897. [Google Scholar] [CrossRef]
- Holquist, J.B.; Klaus, D.M. Characterization of Potassium Superoxide and a Novel Packed Bed Configuration for Closed Environment Air Revitalization. In Proceedings of the 44th International Conference on Environmental Systems, Chicago, IL, USA, 13–17 July 2014. [Google Scholar]
- Peyghan, A.A.; Yourdkhani, S. Capture of carbon dioxide by a nanosized tube of BeO: A DFT study. Struct. Chem. 2013, 25, 419–426. [Google Scholar] [CrossRef]
- Duan, Y.; Luebke, D.; Pennline, H.H. Efficient theoretical screening of solid sorbents for CO2 capture applications. Int. J. Clean Coal Energy 2012, 01, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mosqueda, H.A.; Vazquez, C.; Bosch, P.; Pfeiffer, H. Chemical sorption of carbon dioxide (CO2) on lithium oxide (Li2O). Chem. Mater. 2006, 18, 2307–2310. [Google Scholar] [CrossRef]
- Isahak, W.N.R.W.; Ramli, Z.A.C.; Hisham, M.W.M.; Yarmo, M.A. Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent. Am. Inst. Phys. 2013, 1571, 882–889. [Google Scholar] [CrossRef]
- Duan, Y.; Sorescu, D.C. CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study. J. Chem. Phys. 2010, 133, 074508. [Google Scholar] [CrossRef]
- Abraham, S.; Sarathy, V.P. Biomedical Applications of Calcium Oxide Nanoparticles—A Spectroscopic Study. Int. J. Pharm. Sci. Res. 2018, 49, 121–125. [Google Scholar]
- Khine, E.E.; Baumli, P.; Kaptay, G. Preparation of calcium oxide by a precipitation method. Mater. Sci. Eng. 2020, 45, 182–190. [Google Scholar]
- Khine, E.E.; Koncz-Horvath, D.; Kristaly, F.; Ferenczi, T.; Karacs, G.; Baumli, P.; Kaptay, G. Synthesis and characterization of calcium oxide nanoparticles for CO2 capture. J. Nanopart. Res. 2022, 24, 1–11. [Google Scholar] [CrossRef]
- Shukla, M.; Kumari, S.; Shukla, S.; Shukla, R.K. Potent antibacterial activity of nano CdO synthesized via microemulsion scheme. J. Mater. Environ. Sci. 2012, 3, 678–685. [Google Scholar]
- Das, A. Removal of defects in CdO nanoparticle and rapid synthesis of CdO nanoflake using novel microwave technique to improve semiconductor device performance. Indian J. Sci. Technol. 2021, 14, 858–868. [Google Scholar] [CrossRef]
- Durano, M.; Tamboli, A.; Kim, H. Cobalt oxide synthesized using urea precipitation method as catalyst for the hydrolysis of sodium borohydride. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 355–360. [Google Scholar] [CrossRef]
- Samuel, M.S.; Selvarajan, E.; Mathimani, T.; Santhanam, N.; Phuong, T.N.; Brindhadevi, K.; Pugazhendhi, A. Green synthesis of cobalt-oxide nanoparticle using jumbo Muscadine (Vitis rotundifolia): Characterization and photo-catalytic activity of acid Blue-J. Photochem. Photobiol. B Biol. 2020, 211, 112011. [Google Scholar] [CrossRef] [PubMed]
- Phiwdang, K.; Suphankij, S.; Mekprasart, W.; Pecharapa, W. Synthesis of CuO Nanoparticles by precipitation method using different precursors. Energy Procedia 2013, 34, 740–745. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.; Jewena, N.; Shahabuddin, A.K.M.; Das, S.K.; Khandaker, J.I.; Ahmed, F. Hydrothermal Synthesis Of CuO Nanoparticle And A Study On Property Variation With Synthesis Temperature. J. Appl. Fundam. Sci. Jafsissn 2020, 6, 52. [Google Scholar]
- Aparna, Y.; Rao, K.; Subbarao, P.S. Synthesis and Characterization of CuO Nano Particles by Novel Sol- Gel Method. In Proceedings of the 2nd International Conference on Environment Science and Biotechnology, Kuala Lumpur, Malaysia, 22–23 December 2012; IACSIT Press: Singapore, 2012; Volume 48, pp. 156–160. [Google Scholar] [CrossRef]
- Hassanjani-Roshan, A.; Vaezi, M.R.; Shokuhfar, A.; Rajabali, Z. Synthesis of iron oxide nanoparticles via sonochemical method and their characterization. Particuology 2011, 9, 95–99. [Google Scholar] [CrossRef]
- Qi, Y.; Qi, H.; Li, J.; Lu, C. Synthesis, microstructures and UV–vis absorption properties of β-Ni(OH)2 nanoplates and NiO nanostructures. J. Cryst. Growth 2008, 310, 4221–4225. [Google Scholar] [CrossRef]
- Du, Y.; Xin, Z.; Li, G.; Li, T. Facile synthesis of stacked Ni(OH)2 hexagonal nanoplates in a large scale. Crystals 2021, 11, 1407. [Google Scholar] [CrossRef]
- Kuang, D.-B.; Lei, B.-X.; Pan, Y.-P.; Yu, X.-Y.; Su, C.-Y. Fabrication of novel hierarchical β-Ni(OH)2 and NiO microspheres via an easy hydrothermal process. J. Phys. Chem. C 2009, 113, 5508–5513. [Google Scholar] [CrossRef]
- Li, G.; Wang, X.; Liu, L.; Liu, R.; Shen, F.; Cui, Z.; Chen, W.; Zhang, T. Controllable synthesis of 3D Ni(OH)2 and NiO nanowalls on various substrates for high-performance nanosensors. Small 2014, 11, 731–739. [Google Scholar] [CrossRef]
- Tai, C.Y.; Tai, C.-T.; Chang, M.-H.; Liu, H.-S. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind. Eng. Chem. Res. 2007, 46, 5536–5541. [Google Scholar] [CrossRef]
- Huda, A.; Handoko, C.T.; Bustan, M.D.; Yudono, B.; Gulo, F. New route in the synthesis of Tin(II) oxide micro-sheets and its thermal transformation. Mater. Lett. 2018, 211, 293–295. [Google Scholar] [CrossRef]
- Kolodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide-from synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [Green Version]
- Lide, E.D.R. CRC Handbook of Chemistry and Physics, 2nd ed.; CRC Press: Boca Raton, FL USA, 2003. [Google Scholar] [CrossRef]
- Barin, I. Thermochemical Data of Pure Substances, 2nd ed.; VCH Weinheim: Weinheim, Germany; VCH: New York, NY, USA, 1993. [Google Scholar]
- Kaptay, G. The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Adv. Colloid Interface Sci. 2018, 256, 163–192. [Google Scholar] [CrossRef]
- Tyagi, H.; Kushwaha, A.; Kumar, A.; Aslam, M. pH-dependent synthesis of stabilized gold nanoparticles using ascorbic acid. Int. J. Nanosci. 2011, 10, 857–860. [Google Scholar] [CrossRef]
- Kong, Y.; Chen, J.; Gao, F.; Brydson, R.; Johnson, B.; Heath, G.; Zhang, Y.; Wu, L.; Zhou, D. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: Preparation, characterization, cancer targeting and imaging. Nanoscale 2012, 5, 1009–1017. [Google Scholar] [CrossRef]
- Ozorio, L.P.; Mota, C.J.A. Direct carbonation of glycerol with CO2 catalyzed by metal oxides. ChemPhysChem 2017, 18, 3260–3265. [Google Scholar] [CrossRef] [Green Version]
- Khdary, N.H.; Alayyar, A.S.; Alsarhan, L.M.; Alshihri, S.; Mokhtar, M. Metal oxides as catalyst/supporter for CO2 capture and conversion, review. Catalysts 2022, 12, 300. [Google Scholar] [CrossRef]
- Elhambakhsh, A.; Ghanaatian, A.; Keshavarz, P. Glutamine functionalized iron oxide nanoparticles for high-performance carbon dioxide absorption. J. Nat. Gas Sci. Eng. 2021, 94, 104081. [Google Scholar] [CrossRef]
- Elhambakhsh, A.; Heidari, S.; Keshavarz, P. Experimental study of carbon dioxide absorption by Fe2O3@glutamine/NMP nanofluid. Environ. Sci. Pollut. Res. 2021, 29, 1060–1072. [Google Scholar] [CrossRef]
- Romeo, L.M.; Lara, Y.; Lisbona, P.; Escosa, J.M. Optimizing make-up flow in a CO2 capture system using CaO. Chem. Eng. J. 2009, 147, 252–258. [Google Scholar] [CrossRef]
- Erans, M.; Manovic, V.; Anthony, E.J. Calcium looping sorbents for CO2 capture. Appl. Energy 2016, 180, 722–742. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, J.; Liu, X.; Shen, B.; Parlett, C.M.A.; Adwek, G.O.; Anthony, E.J.; Williams, P.T.; Wu, C. Fundamental studies of carbon capture using CaO-based materials. J. Mater. Chem. A 2019, 7, 9977–9987. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, M.; Florin, N.H.; Harris, A.T. Synthesis and characterization of CaO nanopods for high temperature CO2 capture. Ind. Eng. Chem. Res. 2009, 48, 10765–10770. [Google Scholar] [CrossRef]
- Feng, Z.; Zhu, X.; Yang, J.; Zhong, K.; Jiang, Z.; Yu, Q.; Song, Y.; Hua, Y.; Li, H.; Xu, H. Inherent Facet-Dominant effect for cobalt oxide nanosheets to enhance photocatalytic CO2 reduction. Appl. Surf. Sci. 2021, 578, 151848. [Google Scholar] [CrossRef]
- Fagerlund, J.; Highfield, J.; Zevenhoven, R. Kinetics studies on wet and dry gas–solid carbonation of MgO and Mg(OH)2 for CO2 sequestration. RSC Adv. 2012, 2, 10380–10393. [Google Scholar] [CrossRef]
- Ward, S.; Braslaw, J.; Gealer, R. Carbon dioxide sorption studies on magnesium oxide. Thermochim. Acta 1983, 64, 107–114. [Google Scholar] [CrossRef]
- Mendoza, E.Y.M.; Santos, A.S.; López, E.V.; Drozd, V.; Durygin, A.; Chen, J.; Saxena, S.K. Iron oxides as efficient sorbents for CO2 capture. J. Mater. Res. Technol. 2019, 8, 2944–2956. [Google Scholar] [CrossRef]
- Ortiz-Landeros, J.; Ávalos-Rendón, T.L.; Gómez-Yáñez, C.; Pfeiffer, H. Analysis and perspectives concerning CO2 chemisorption on lithium ceramics using thermal analysis. J. Therm. Anal. Calorim. 2011, 108, 647–655. [Google Scholar] [CrossRef]
- Börüban, C. Carbon Dioxide Capture by Copper Oxide Nanoparticles Decorated Supports. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2016. [Google Scholar]
- Zarei, F.; Keshavarz, P. Intensification of CO2 absorption and desorption by metal/non-metal oxide nanoparticles in bubble columns. Environ. Sci. Pollut. Res. 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Marliza, T.S.; Yarmo, M.A.; Hakim, A.; Tahari, M.N.A.; Hisham, M.W.M.; Taufiq-Yap, Y.H. CO2 capture on NiO supported imidazolium-based ionic liquid. AIP Conf. Proc. 2017, 1838, 020008. [Google Scholar] [CrossRef] [Green Version]
- Taira, K.; Nakao, K.; Suzuki, K. CO2 capture in humid gas using ZnO/activated carbon and ZnO reactivity with CO2. React. Kinet. Mech. Catal. 2015, 115, 563–579. [Google Scholar] [CrossRef]
- Farias, S.A.S.; Longo, E.; Gargano, R.; Martins, J.B.L. CO2 adsorption on polar surfaces of ZnO. J. Mol. Model. 2012, 19, 2069–2078. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.-L.; Luo, Q.-H. Adsorption of CO2 at ZnO: A surface structure effect from DFT+U calculations. J. Phys. Chem. C 2013, 117, 22954–22966. [Google Scholar] [CrossRef]
- Yanase, I.; Konno, S.; Kobayashi, H. Reversible CO2 capture by ZnO slurry leading to formation of fine ZnO particles. Adv. Powder Technol. 2018, 29, 1239–1245. [Google Scholar] [CrossRef]
- Kumar, S. The effect of elevated pressure, temperature and particles morphology on the carbon dioxide capture using zinc oxide. J. CO2 Util. 2014, 8, 60–66. [Google Scholar] [CrossRef]
M | x | M | g/100 g H2O | g/mol | M | Obey? |
---|---|---|---|---|---|---|
Al | 3 | 0.67 | 45.1 | 133.33 | 3.38 | Yes |
Au | 3 | 0.67 | 68 | 303.35 | 2.24 | Yes |
Ba | 2 | 1 | 37 | 208.2 | 1.78 | Yes |
Be | 2 | 1 | 71.5 | 79.91 | 8.95 | Yes |
Ca | 2 | 1 | 81.3 | 110.98 | 7.33 | Yes |
Cd | 2 | 1 | 120 | 183.3 | 6.55 | Yes |
Co | 2 | 1 | 56.2 | 129.83 | 4.33 | Yes |
Cs | 1 | 2 | 191 | 168.35 | 11.35 | Yes |
Cu | 2 | 1 | 75.7 | 134.45 | 5.63 | Yes |
Fe | 2 | 1 | 65 | 126.75 | 5.13 | Yes |
Fe | 3 | 0.67 | 91.2 | 162.2 | 5.62 | Yes |
In | 3 | 0.67 | 195.1 | 221.15 | 8.82 | Yes |
K | 1 | 2 | 35.5 | 74.55 | 4.76 | Yes |
La | 3 | 0.67 | 95.7 | 245.25 | 3.90 | Yes |
Li | 1 | 2 | 84.5 | 42.39 | 19.93 | Yes |
Mg | 2 | 1 | 56 | 95.21 | 5.88 | Yes |
Mn | 2 | 1 | 77.3 | 125.84 | 6.14 | Yes |
Na | 1 | 2 | 36 | 58.44 | 6.16 | Yes |
Nd | 3 | 0.67 | 100 | 205.55 | 4.86 | Yes |
Ni | 2 | 1 | 67.5 | 129.59 | 5.21 | Yes |
Pr | 3 | 0.67 | 96.1 | 247.25 | 3.89 | Yes |
Pt | 4 | 0.5 | 142 | 336.9 | 4.21 | Yes |
Rb | 1 | 2 | 93.9 | 120.92 | 7.77 | Yes |
Sb | 3 | 0.67 | 987 | 228.15 | 43.26 | Yes |
Sm | 3 | 0.67 | 93.8 | 256.75 | 3.65 | Yes |
Sn | 2 | 1 | 178 | 189.6 | 9.39 | Yes |
Sr | 2 | 1 | 54.7 | 158.52 | 3.45 | Yes |
Y | 3 | 0.67 | 75.1 | 195.26 | 3.85 | Yes |
Zn | 2 | 1 | 408 | 136.28 | 29.94 | Yes |
Ag | 1 | 2 | 0.00019 | 143.32 | 1.33 × 10−5 | No |
Au | 1 | 2 | 0.000031 | 232.42 | 1.33 × 10−6 | No |
Cu | 1 | 2 | 0.0047 | 98.99 | 4.75 × 10−4 | No |
Hg | 1 | 2 | 7.31 | 271.52 | 0.23 | No |
Hg | 2 | 1 | 0.0004 | 472.09 | 8.47 × 10−6 | No |
Pb | 2 | 1 | 1.08 | 278.1 | 0.0388 | No |
Ra | 2 | 1 | 24.5 | 296.09 | 0.827 | No |
Tl | 1 | 2 | 0.33 | 189.68 | 0.0174 | No |
M | x | Preference | ||||||
---|---|---|---|---|---|---|---|---|
Al | 3 | −629.5 | −1137.8 | −1581.7 | −521.5 | −529.8 | −8.3 | mixed * |
Au | 3 | −47.3 | −316.2 | +78.4 | (−282.1) | (−281.9) | (+0.2) | Au ** |
Ba | 2 | −810.0 | −859.0 | −525.2 | −57.8 | +39.2 | +97.0 | Ba(OH)2 |
Be | 2 | −449.2 | −815.4 | −578.9 | −375.0 | −375.3 | −0.3 | mixed |
Ca | 2 | −747.8 | −897.9 | −603.3 | −158.9 | −101.1 | +57.8 | Ca(OH)2 |
Cd | 2 | −343.6 | −473.2 | −229.1 | −138.4 | −131.1 | +7.3 | mixed |
Co | 2 | −269.4 | −453.6 | −214.1 | −193.0 | −190.3 | +2.7 | mixed |
Cu | 2 | −173.5 | −358.5 | −128.1 | −193.8 | −200.2 | −6.4 | mixed |
Fe | 2 | −302.1 | −486.5 | −251.3 | −193.2 | −194.8 | −1.6 | mixed |
Fe | 3 | −333.5 | −695.7 | −741.8 | −375.4 | −405.8 | −30.4 | Fe2O3 |
In | 3 | −461.8 | --- | −830.0 | --- | −321.6 | --- | In2O3 |
La | 3 | −994.9 | --- | −1705.4 | --- | −226.2 | --- | La2O3 |
Li | 1 | −383.9 | −438.7 | −561.9 | −59.2 | −20.9 | +38.4 | LiOH |
Mg | 2 | −591.8 | −833.1 | −568.7 | −250.1 | −222.5 | +27.6 | Mg(OH)2 |
Mn | 2 | −440.2 | --- | −362.8 | --- | −168.4 | --- | MnO |
Nd | 3 | −966.1 | --- | −1720.5 | --- | −262.6 | --- | Nd2O3 |
Ni | 2 | −258.9 | --- | −211.4 | --- | −198.1 | --- | NiO |
Pr | 3 | −980.3 | --- | −1719.7 | --- | −248.0 | --- | Pr2O3 |
Sb | 3 | −322.1 | --- | −633.8 | --- | −363.2 | --- | Sb2O3 |
Sn | 2 | −286.0 | --- | −256.6 | --- | −216.2 | --- | SnO |
Sm | 3 | −949.7 | --- | −1736.8 | --- | −287.1 | --- | Sm2O3 |
Sr | 2 | −779.7 | −880.6 | −561.2 | −109.7 | −27.1 | +82.6 | Sr(OH)2 |
Y | 3 | −927.3 | --- | −1816.1 | --- | −349.2 | --- | Y2O3 |
Zn | 2 | −369.1 | --- | −320.3 | --- | −196.8 | --- | ZnO |
Cs | 1 | −414.2 | −370.4 | −308.2 | +39.4 | +137.3 | +97.9 | No |
K | 1 | −408.6 | −378.6 | −322.5 | +25.6 | +124.6 | +99.0 | No |
Na | 1 | −383.9 | −379.5 | −378.8 | 0.0 | +71.7 | +71.7 | No |
Pt | 4 | −163.3 | --- | --- | --- | --- | --- | No |
Rb | 1 | −407.6 | --- | −299.8 | --- | +134.9 | --- | No |
M | x | Obey? | ||||
---|---|---|---|---|---|---|
g/100 g H2O | g/mol | M | M | |||
Al | 3 | 0 | 78 | 0.033 | 0 | Yes |
Be | 2 | 0 | 43.01 | 0.050 | 0 | Yes |
Ca | 2 | 0.16 | 74.1 | 0.050 | 0.022 | Yes |
Cd | 2 | 0.00015 | 146.4 | 0.050 | 1.02 × 10−05 | Yes |
Co | 2 | 0 | 92.9 | 0.050 | 0 | Yes |
Cu | 2 | 0 | 97.6 | 0.050 | 0 | Yes |
Fe | 2 | 0.000052 | 89.9 | 0.050 | 5.78 × 10−06 | Yes |
Fe | 3 | 0 | 106.9 | 0.033 | 0 | Yes |
Mg | 2 | 0.00069 | 58.3 | 0.050 | 1.18 × 10−04 | Yes |
Mn | 2 | 0.00034 | 88.9 | 0.050 | 3.82 × 10−05 | Yes |
Ni | 2 | 0.00015 | 92.7 | 0.050 | 1.62 × 10−05 | Yes |
Sb | 3 | 0 | 172.78 | 0.033 | 0 | Yes |
Sn | 2 | 0 | 152.7 | 0.050 | 0 | Yes |
Zn | 2 | 0.000042 | 99.42 | 0.050 | 4.22 × 10−06 | Yes |
Ba | 2 | 4.91 | 171.3 | 0.050 | 0.29 | No |
Li | 1 | 12.5 | 23.9 | 0.100 | 5.23 | No |
Sr | 2 | 2.25 | 121.6 | 0.050 | 0.19 | No |
M | x | Td (K) |
---|---|---|
Al | 3 | 318 |
Be | 2 | 354 |
Ca | 2 | 785 |
Cd | 2 | 387 |
Co | 2 | 368 |
Cu | 2 | 313 |
Fe | 2 | 342 |
Mg | 2 | 542 |
M | x | -RTlnKmin | Obey? | |||
---|---|---|---|---|---|---|
kJ/mol | kJ/mol | kJ/mol | kJ/mol | |||
Ca | 2 | −25.1 | −603.3 | −1127.3 | −129.6 | Yes |
Cd | 2 | −25.1 | −229.1 | −670.0 | −46.5 | Yes |
Co | 2 | −25.1 | −214.1 | −636.3 | −27.8 | Yes |
Fe | 2 | −25.1 | −251.3 | −666.2 | −20.5 | Weakly * |
Mg | 2 | −25.1 | −568.7 | −1011.7 | −48.6 | Yes |
Mn | 2 | −25.1 | −362.8 | −816.2 | −59.0 | Yes |
Ni | 2 | −25.1 | −211.4 | −617.4 | −11.6 | Weakly |
Zn | 2 | −25.1 | −320.3 | −731.0 | −16.3 | Weakly |
Al | 3 | −37.7 | −1581.7 | --- | --- | No |
Be | 2 | −25.1 | −578.9 | --- | --- | No |
Cu | 2 | −25.1 | −128.1 | --- | --- | No |
Fe | 3 | −37.7 | −741.8 | --- | --- | No |
In | 3 | −37.7 | −830.0 | --- | --- | No |
La | 3 | −37.7 | −1705.4 | --- | --- | No |
Nd | 3 | −37.7 | −1720.5 | --- | --- | No |
Pr | 3 | −37.7 | −1719.7 | --- | --- | No |
Sb | 3 | −37.7 | −633.8 | --- | --- | No |
Sm | 3 | −37.7 | −1736.8 | --- | --- | No |
Sn | 2 | −25.1 | −256.6 | --- | --- | No |
Y | 3 | −37.7 | −1816.1 | --- | --- | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khine, E.E.; Kaptay, G. Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis. Materials 2023, 16, 776. https://doi.org/10.3390/ma16020776
Khine EE, Kaptay G. Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis. Materials. 2023; 16(2):776. https://doi.org/10.3390/ma16020776
Chicago/Turabian StyleKhine, Ei Ei, and George Kaptay. 2023. "Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis" Materials 16, no. 2: 776. https://doi.org/10.3390/ma16020776
APA StyleKhine, E. E., & Kaptay, G. (2023). Identification of Nano-Metal Oxides That Can Be Synthesized by Precipitation-Calcination Method Reacting Their Chloride Solutions with NaOH Solution and Their Application for Carbon Dioxide Capture from Air—A Thermodynamic Analysis. Materials, 16(2), 776. https://doi.org/10.3390/ma16020776