Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FTIR | Fourier transform infrared |
UV-Vis | Ultraviolet-Visible |
PL | Photoluminescence |
NMR | Nuclear magnetic resonance |
TL | Thermal lens |
MMDB | Mode-mismatched dual-beam |
SAE | Society of Automotive Engineers |
DSO | Digital storage oscilloscope |
He-Cd | Helium–Cadmium |
He-Ne | Helium–Neon |
CIE | International Commission on Illumination |
List of symbols | |
°C | Degree Celsius |
h | Hour |
cc | Cubic capacity |
km | Kilometre |
cm | Centimetre |
mm | Millimetre |
nm | Nanometre |
mW | Milliwatt |
λe | Pump beam wavelength (nm) |
λp | Probe beam wavelength (nm) |
Hz | Hertz (s−1) |
Pump beam radius at the sample (µm) | |
Probe beam radius at the sample(µm) | |
Probe beam radius at beam waist (µm) | |
Excitation beam waist radius (µm) | |
I0 | Intensity of probe beam at time = 0 |
I(t) | Intensity of probe beam at time = t |
Probe beam phase shift | |
tc | Characteristic time constant |
K | Thermal conductivity (W·m−1 K−1) |
D | Thermal diffusivity (m2 s−1) |
n | Refractive index |
ΔT | Change in temperature |
Refractive index gradient | |
Pth | Absorbed photothermal energy (J) |
A | Absorption coefficient of the sample (m−1) |
l | Path length of the cuvette (mm) |
m | Degree of mode mismatching |
f | Focal length of the convex lens (cm) |
d | Laser beam diameter (mm) |
On-axis phase shift | |
n2 | Nonlinear refractive index (m2·W−1) |
Effective length of the sample | |
α | Linear absorption coefficient (cm−1) |
µL | Microlitre |
References
- Sher, E. Environmental Aspect of Air Pollution. In Handbook of Air Pollution from Internal Combustion Engines—Pollution Formation and Control, 1st ed.; Academic Press: San Diego, CA, USA, 1998; Volume 1, pp. 27–42. [Google Scholar]
- Mayers, P.S.; Uyehara, O.A.; Newhall, H.K. Engine Exhaust Emissions. In Engine Emissions—Pollutant Formation and Measurement, 1st ed.; Springer, G.S., Patterson, D.J., Eds.; Plenum Press: New York, NY, USA; London, UK, 1973; Volume 1, pp. 1–31. [Google Scholar]
- Tan, D.; Wu, Y.; Lv, J.; Li, J.; Ou, X.; Meng, Y.; Lan, G.; Chen, Y.; Zhang, Z. Performance Optimization of a Diesel Engine Fueled with Hydrogen/Biodiesel with Water Addition Based on the Response Surface Methodology. Energy 2023, 263, 125869. [Google Scholar] [CrossRef]
- Nikolakopoulos, P.G.; Mavroudis, S.; Zavos, A. Lubrication Performance of Engine Commercial Oils with Different Performance Levels: The Effect of Engine Synthetic Oil Aging on Piston Ring Tribology under Real Engine Conditions. Lubricants 2018, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, A.K.; Vinu, R. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils. Lubricants 2015, 3, 54–79. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Zhu, N.; Feng, Y.; Michaelides, E.E.; Żyła, G.; Jing, D.; Zhang, X.; Norris, P.M.; Markides, C.N.; Mahian, O. A Review of Recent Advances in Thermophysical Properties at the Nanoscale: From Solid State to Colloids. Phys. Rep. 2020, 843, 1–81. [Google Scholar] [CrossRef]
- Sejkorová, M.; Hurtová, I.; Jilek, P.; Novák, M.; Voltr, O. Study of the Effect of Physicochemical Degradation and Contamination of Motor Oils on Their Lubricity. Coatings 2021, 11, 60. [Google Scholar] [CrossRef]
- Fraenza, C.C.; Förster, E.; Guthausen, G.; Nirschl, H.; Anoardo, E. Use of 1H-NMR Spectroscopy, Diffusometry and Relaxometry for the Characterization of Thermally-Induced Degradation of Motor Oils. Tribol. Int. 2021, 153, 106620. [Google Scholar] [CrossRef]
- Tahmasebi Sulgani, M.; Karimipour, A. Improve the Thermal Conductivity of 10w40-Engine Oil at Various Temperature by Addition of Al2O3/Fe2O3 Nanoparticles. J. Mol. Liq. 2019, 283, 660–666. [Google Scholar] [CrossRef]
- Raposo, H.; Farinha, J.T.; Fonseca, I.; Ferreira, L.A. Condition Monitoring with Prediction Based on Diesel Engine Oil Analysis: A Case Study for Urban Buses. Actuators 2019, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Motamen Salehi, F.; Morina, A.; Neville, A. The Effect of Soot and Diesel Contamination on Wear and Friction of Engine Oil Pump. Tribol. Int. 2017, 115, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Alshehawy, A.M.; Mansour, D.E.A.; Ghali, M. Photoluminescence Based Condition Assessment of Aged Transformer Oil. In Proceedings of the 19th International Middle-East Power Systems Conference, Cairo, Egypt, 17–19 December 2017. [Google Scholar]
- van de Voort, F.R.; Sedman, J.; Cocciardi, R.A.; Pinchuk, D. FTIR Condition Monitoring of In-Service Lubricants: Ongoing Developments and Future Perspectives. Tribol. Trans. 2006, 49, 410–418. [Google Scholar] [CrossRef]
- Macián, V.; Tormos, B.; Gómez, Y.A.; Salavert, J.M. Proposal of an FTIR Methodology to Monitor Oxidation Level in Used Engine Oils: Effects of Thermal Degradation and Fuel Dilution. Tribol. Trans. 2012, 55, 872–882. [Google Scholar] [CrossRef]
- Sheik-Bahae, M.; Said, A.A.; Wei, T.H.; Hagan, D.J.; Van Stryland, E.W. Sensitive Measurement of Optical Nonlinearities Using a Single Beam. IEEE J. Quantum Electron. 1990, 26, 760–769. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, R.; Swapna, M.S.; Sarithadevi, H.V.; Raj, V.; Hari, M.; Sankararaman, S. The Role of Hydroxyl Ions in the Evolution of Optical Nonlinearity of CuO: A Z Scan Study. Mater. Res. Exp. 2019, 6, 116202. [Google Scholar] [CrossRef]
- Dais, P.; Hatzakis, E. Quality Assessment and Authentication of Virgin Olive Oil by NMR Spectroscopy: A Critical Review. Anal. Chim. Acta 2013, 765, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Georges, J. Advantages and Limitations of Thermal Lens Spectrometry over Conventional Spectrophotometry for Absorbance Measurements. Talanta 1999, 48, 501–509. [Google Scholar] [CrossRef]
- Franko, M.; Tran, C.D. Analytical Thermal Lens Instrumentation. Rev. Sci. Instrum. 1996, 67, 1–18. [Google Scholar] [CrossRef]
- Raj, V.; Swapna, M.S.; Sarithadevi, H.V.; Sankararaman, S. Nonradiative Analysis of Adulteration in Coconut Oil by Thermal Lens Technique. Appl. Phys. B 2019, 125, 113. [Google Scholar] [CrossRef]
- Shen, J.; Lowe, R.D.; Snook, R.D. A Model for Cw Laser Induced Mode-Mismatched Dual-Beam Thermal Lens Spectrometry. Chem. Phys. 1992, 165, 385–396. [Google Scholar] [CrossRef]
- Marbello, O.; Valbuena, S.; Racedo, F.J. Non-Linear Optical Response of Edible Oils by Means of the Z-Scan Technique. J. Phys. Conf. Ser. 2019, 1219, 012008. [Google Scholar] [CrossRef]
- Dominguez-Rosado, E.; Pichtel, J. Chemical Characterization of Fresh, Used and Weathered Motor Oil via GC/MS, NMR and FTIR Techniques. Proc. Indiana Acad. Sci. 2003, 112, 109–111. [Google Scholar]
- Odebunmi, E.O.; Adeniyi, S.A. Infrared and Ultraviolet Spectrophotometric Analysis of Chromatographic Fractions of Crude Oils and Petroleum Products. Bull. Chem. Soc. Ethiop. 2007, 21, 135–140. [Google Scholar] [CrossRef]
- Wolak, A.; Krasodomski, W.; Zając, G. FTIR Analysis and Monitoring of Used Synthetic Oils Operated under Similar Driving Conditions. Friction 2020, 8, 995–1006. [Google Scholar] [CrossRef]
- Kupareva, A.; Mäki-Arvela, P.; Grénman, H.; Eränen, K.; Sjöholm, R.; Reunanen, M.; Murzin, D.Y. Chemical Characterization of Lube Oils. Energy Fuels 2013, 27, 27–34. [Google Scholar] [CrossRef]
- Diaby, M.; Sablier, M.; Le Negrate, A.; El Fassi, M.; Bocquet, J. Understanding Carbonaceous Deposit Formation Resulting from Engine Oil Degradation. Carbon 2009, 47, 355–366. [Google Scholar] [CrossRef]
- Swapna, M.S.; Raj, V.; Sankararaman, S. Allotropic Transformation Instigated Thermal Diffusivity of Soot Nanofluid: Thermal Lens Study. Phys. Fluids 2019, 31, 117106. [Google Scholar] [CrossRef]
- Lockwood, F.E.; Zhang, Z.G.; Choi, S.U.S.; Yu, W. Thermal Characteristics of New and Used Diesel Engine Oils. In Proceedings of the 2nd World Tribology Congress, Vienna, Austria, 3–7 September 2001. [Google Scholar]
- Holland, T.; Abdul-Munaim, A.M.; Mandrell, C.; Karunanithy, R.; Watson, D.G.; Sivakumar, P. UV-Visible Spectrophotometer for Distinguishing Oxidation Time of Engine Oil. Lubricants 2021, 9, 37. [Google Scholar] [CrossRef]
- Raj, V.; Soumya, S.; Swapna, M.S.; Sankararaman, S. Nondestructive Evaluation of Heat Trap Mechanism in Coconut Oil—A Thermal Lens Study. Mater. Res. Exp. 2018, 5, 115504. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Mishra, A.K. Inner Filter Effect Mediated Red-Shift in Synchronous and Total Synchronous Fluorescence Spectra as a Tool to Monitor Quality of Oils and Petrochemicals. Fuel 2020, 267, 117174. [Google Scholar] [CrossRef]
- Panigrahi, S.K.; Thakur, S.; Sarathi, R.; Mishra, A.K. Understanding the Physico-Chemical Properties of Thermally Aged Natural Ester Oil Adopting Fluorescent Technique. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3460–3470. [Google Scholar] [CrossRef]
- Swapna, M.S.; Sankararaman, S. From Futile to Fruitful: Diesel Soot as White Light Emitter. J. Fluoresc. 2018, 28, 543–549. [Google Scholar] [CrossRef]
- Swapna, M.S.; Sankararaman, S. Blue Light Emitting Diesel Soot for Photonic Applications. Mater. Res. Express 2018, 5, 016203. [Google Scholar] [CrossRef]
- Ryder, A.G. Analysis of Crude Petroleum Oils Using Fluorescence Spectroscopy. In Reviews in Fluorescence; Springer: Boston, MA, USA, 2005; pp. 169–198. [Google Scholar]
- Raj, V.; Swapna, M.S.; Sankararaman, S. Nondestructive Radiative Evaluation of Adulteration in Coconut Oil. Eur. Phys. J. Plus 2018, 133, 544. [Google Scholar] [CrossRef]
- Abdul Jameel, A.G. Identification and Quantification of Hydrocarbon Functional Groups in Gasoline Using 1H-NMR Spectroscopy for Property Prediction. Molecules 2021, 26, 6989. [Google Scholar] [CrossRef] [PubMed]
- Förster, E.; Becker, J.; Dalitz, F.; Görling, B.; Luy, B.; Nirschl, H.; Guthausen, G. NMR Investigations on the Aging of Motor Oils. Energy Fuels 2015, 29, 7204–7212. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA, 12–17 November 1995. [Google Scholar]
- Swapna, M.S.; Vimal, R.; Kumar, K.S.; Sankararaman, S. Soot Effected Sample Entropy Minimization in Nano Fl Uid for Thermal System Design: A Thermal Lens Study. J. Mol. Liq. 2020, 318, 114038. [Google Scholar] [CrossRef]
- Swapna, M.S.; Sankararaman, S. Generalized Theory of Thermal Conductivity for Different Media: Solids to Nanofluids. J. Phys. Chem. C 2019, 123, 23264–23271. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokul, V.; Swapna, M.N.S.; Korte, D.; Sankararaman, S.I. Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses. Materials 2023, 16, 773. https://doi.org/10.3390/ma16020773
Gokul V, Swapna MNS, Korte D, Sankararaman SI. Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses. Materials. 2023; 16(2):773. https://doi.org/10.3390/ma16020773
Chicago/Turabian StyleGokul, Vijayakumar, Mohanachandran Nair Sindhu Swapna, Dorota Korte, and Sankaranarayana Iyer Sankararaman. 2023. "Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses" Materials 16, no. 2: 773. https://doi.org/10.3390/ma16020773
APA StyleGokul, V., Swapna, M. N. S., Korte, D., & Sankararaman, S. I. (2023). Reflecting the Quality Degradation of Engine Oil by the Thermal Diffusivity: Radiative and Nonradiative Analyses. Materials, 16(2), 773. https://doi.org/10.3390/ma16020773