True Stress Theory of Matrix in A Composite: A Topical Review
Abstract
:Highlights
Abstract
1. Introduction
2. Homoginized Stresses
3. True Stress
3.1. Background
3.2. Definition
3.3. Matrix SCFs with Perfect Interface Bonding [4,5,6,7,8]
3.4. Matrix SCFs after Interface Debonding [8,9]
3.5. Matrix Longitudinal SCFs [10,11]
3.6. Numerical Examples
3.7. True Stresses
3.8. Roles of the True Stresses
4. Selected Applications
4.1. Uniaxial Strengths of UD Composites
4.2. Interface Debonding
4.3. Interface Slippage
4.4. Fiber Kinking or Splitting Failure
4.5. Matrix Compression-Induced Composite Failure
4.6. Applications to Other Areas
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion and related Problems. Proc. Royal Soc. 1957, A240, 367–396. [Google Scholar]
- Cheng, S.; Chen, D. On the Stress Distribution in Laminae. J. Reinf. Plast. Compos. 1988, 7, 136–144. [Google Scholar] [CrossRef]
- Chen, T.; Dvorak, G.J.; Benveniste, Y. Stress fields in composites reinforced by coated cylindrically orthotropic fibers. Mech. Mater. 1990, 9, 17–32. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Liu, L. Predicting strength of fibrous laminates under triaxial loads only upon independently measured constituent properties. Int. J. Mech. Sci. 2014, 79, 105–129. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Xin, L.M. In situ strengths of matrix in a composite. Acta Mech. Sin. 2017, 33, 120–131. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Xin, L.M. Stress Concentration Factor in Matrix of a Composite Subjected to Transverse Compression. Int. J. Appl. Mech. 2016, 8, 1650034. [Google Scholar] [CrossRef]
- Huang, Z.-M. Failure and Strength of Composite Materials; Science Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- Zhou, Y.; Huang, Z.-M.; Liu, L. Prediction of Interfacial Debonding in Fiber-Reinforced Composite Laminates. Polym. Compos. 2019, 40, 1828–1841. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.-M. Prediction of in-plane shear properties of a composite with debonded interface. Appl. Compos. Mater. 2022, 29, 901–935. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Guo, W.J.; Huang, H.B.; Zhang, C.C. Tensile Strength Prediction of Short Fiber Reinforced Composites. Materials 2021, 14, 2708. [Google Scholar] [CrossRef]
- Guo, W.J.; Huang, Z.-M. Compressive strength of a short fiber reinforced composite. Chinese J. Solid Mech. 2022, 43, 1–15. (In Chinese) [Google Scholar]
- Sun, Q.; Guo, H.; Zhou, G.; Meng, Z.; Chen, Z.; Kang, H.; Keten, S.; Su, X. Experimental and computational analysis of failure mechanisms in unidirectional carbon fiber reinforced polymer laminates under longitudinal compression loading. Comp. Struct. 2018, 203, 335–348. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.-M.; Wang, J.X. Splitting failure of a composite under longitudinal tension. Poly. Comp. 2022. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.-M. Failure of fiber-reinforced composite laminates under longitudinal compression. J. Comp. Mater. 2019, 53, 3395–3411. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, Z.-M. Shear deformation of a composite until failure with a debonded interface. Comp. Struct. 2020, 254, 112797. [Google Scholar] [CrossRef]
- Huang, Z.-M. On micromechanics approach to stiffness and strength of unidirectional composites. J. Reinf. Plastics Comp. 2019, 38, 167–196. [Google Scholar] [CrossRef]
- Huang, Z.-M. Simulation of the Mechanical Properties of Fibrous Composites by the Bridging Micromechanics Model. Comp. Part A 2001, 32, 143–172. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, C.C.; Xue, Y.D. Stiffness prediction of short fiber reinforced composites. Int. J. Mech. Sci. 2019, 161–162, 105068. [Google Scholar] [CrossRef]
- Huang, H.B.; Huang, Z.-M. Micromechanical prediction of elastic-plastic behavior of a short fiber or particle reinforced composite. Comp. Part A 2020, 134, 105889. [Google Scholar] [CrossRef]
- Huang, Z.-M. Constitutive Relation, Deformation, Failure and Strength of Composites Reinforced with Continuous/Short Fibers or Particles. Comp. Struct. 2021, 262, 113279. [Google Scholar] [CrossRef]
- Ryan, S.; Wicklein, M.; Mouritz, A.; Riedel, W.; Schäfer, F.; Thoma, K. Theoretical prediction of dynamic composite material properties for hypervelocity impact simulations. Int. J. Impact Eng. 2009, 36, 899–912. [Google Scholar] [CrossRef] [Green Version]
- Younes, R.; Hallal, A.; Fardoun, F.; Chehade, F.H. Comparative review study on elastic properties modeling for unidirectional composite materials. In Composites and Their Properties; Hu, N., Ed.; IntechOpen: London, UK, 2012; pp. 391–408. [Google Scholar]
- Vignoli, L.L.; Savi, M.A.; Pacheco, P.M.C.L.; Kalamkarov, A.L. Comparative analysis of micromechanical models for the elastic composite laminae. Comp. Part B 2019, 174, 106961. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Ramakrishna, S. Micromechanical modelling approaches for the stiffness and strength of knitted fabric composites: A review & comparative study. Comp. Part A 2000, 31, 479–501. [Google Scholar]
- Huang, Z.-M.; Fujihara, K.; Ramakrishna, S. Flexural Failure Behavior of Laminated Composites Reinforced with Braided Fabrics. AIAA J. 2002, 40, 1415–1420. [Google Scholar] [CrossRef]
- Toya, M. A crack along the interface of a circular inclusion embedded in an infinite solid. J. Mech. Phys. Solids. 1974, 22, 325–348. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, X.; Li, G.; Lian, J. A new analytical model for three-dimensional elastic stress field distribution in short fibre composite. Mater. Sci. Engin. A. 2004, 366, 381–396. [Google Scholar]
- Soden, P.D.; Hinton, M.J.; Kaddour, A.S. Lamina properties, lay-up configurations and loading conditions for a range of fibre-reinforced composite laminates. Comp. Sci. Technol. 1998, 58, 1011–1022. [Google Scholar] [CrossRef]
- Kaddour, A.S.; Hinton, J.M. Input data for test cases used in benchmarking triaxial failure theories of composites. J. Comp. Mater. 2012, 46, 2295–2312. [Google Scholar] [CrossRef]
- Kaddour, A.S.; Hinton, M.J.; Smith, P.A.; Li, S. Mechanical properties and details of composite laminates for test cases used in the third world-wide failure exercise. J. Comp. Mater. 2013, 47, 2427–2442. [Google Scholar] [CrossRef]
- Hobbiebrunken, T.; Hojo, M.; Adachi, T.; Jong, C.D.; Fiedler, B. Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments. Comp. Part A 2006, 37, 2248–2256. [Google Scholar] [CrossRef]
- Mortell, D.J.; Tanner, D.A.; McCarthy, C.T. In-situ SEM study of transverse cracking and delamination in laminated composite materials. Comp. Sci. Technol. 2014, 105, 118–126. [Google Scholar] [CrossRef]
- Koyanagi, J.; Ogihara, S.; Nakatani, H.; Okabe, T.; Yoneyama, S. Mechanical properties of fiber/ matrix interface in polymer matrix composites. Adv. Comp. Mater. 2014, 23, 551–570. [Google Scholar] [CrossRef]
- Fallahi, H.; Taheri-Behrooz, F.; Asadi, A. Nonlinear Mechanical Response of Polymer Matrix Composites: A Review. Polym. Rev. 2020, 60, 42–85. [Google Scholar] [CrossRef]
- Totry, E.; Molina-Aldareguía, J.M.; González, C.; LLorca, J. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Comp. Sci. Technol. 2010, 70, 970–980. [Google Scholar] [CrossRef]
- Budiansky, B.; Fleck, N.A. Compressive failure of fibre composites. J. Mech. Phy. Solids. 1993, 41, 183–211. [Google Scholar] [CrossRef]
- Yurgartis, S. Measurement of small angle fiber misalignments in continuous fiber composites. Comp. Sci. Technol. 1987, 30, 279–293. [Google Scholar] [CrossRef]
- Puck, A.; Shurmann, H. Failure analysis of FRP laminates by means of physically based phenomenological models. Comp. Sci. Technol. 1998, 58, 1045–1067. [Google Scholar] [CrossRef]
- Pinho, S.T.; Davila, C.G.; Camnaho, P.P.; Lannucci, L.; Robinson, P. Failure Models and Criteria for FRP under In-Plane or Three-Dimensional Stress States Including Shear Non-Linearity; NASA/TM-2005-213530; NASA Langley Research Center: Hampton, VA, USA, 2005. [Google Scholar]
- Huang, Z.-M.; Wang, L.S.; Jiang, F.; Xue, Y.D. Detection on matrix induced composite failures. Comp. Sci. Technol. 2021, 205, 108670. [Google Scholar] [CrossRef]
- Wang, L.S.; Huang, Z.-M. On Strength Prediction of Laminated Composites. Comp. Sci. Technol. 2022, 219, 109206. [Google Scholar] [CrossRef]
- Hafiychuk, V. Modeling of Microstructure for Uncertainty Assessment of Carbon Fiber Reinforced Polymer Composites. In Proceedings of the 2016 IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2016; pp. 1–9. [Google Scholar]
- Xin, H.; Liu, Y.; Mosallam, A.; He, J.; Du, A. Evaluation on material behaviors of pultruded glass fiber reinforced polymer (GFRP) laminates. Comp. Struct. 2017, 182, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Chen, X.; Zhai, Z.; Yang, Z.; Chen, Q. The effects of thermal residual stresses and interfacial properties on the transverse behaviors of fiber composites with different microstructures. Sci. Eng. Compos. Mater. 2017, 24, 41–51. [Google Scholar] [CrossRef]
- Toh, W.; Tan, L.B.; Tse, K.M.; Giam, A.; Raju, K.; Lee, H.P.; Tan, V.B.C. Material characterization of filament-wound composite pipes. Comp. Struct. 2018, 206, 474–483. [Google Scholar] [CrossRef]
- Vignoli, L.L.; Savi, M.A. Multiscale Failure Analysis of Cylindrical Composite Pressure Vessel: A Parametric Study. Latin Amer. J. Solids Struct. 2018, 15, e63. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Mosallam, A.S.; Liu, Y.; Veljkovic, M.; He, J. Mechanical characterization of a unidirectional pultruded composite lamina using micromechanics and numerical homogenization. Constr. Build. Mater. 2019, 216, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Ren, M.-F.; Zhang, X.-W.; Huang, C.; Wang, B.; Li, T. An integrated macro/micro-scale approach for in situ evaluation of matrix cracking in the polymer matrix of cryogenic composite tanks. Comp. Struct. 2019, 216, 201–212. [Google Scholar] [CrossRef]
- Du, Z.; Ni, X.; Liu, X.; Yu, J.; Wu, Y. Effect of nano-interface stress concentration on fracture stress of composite grains. J. Harbin Inst. Technol. 2019, 51, 118–124. (In Chinese) [Google Scholar]
- Vignoli, L.L.; Savi, M.A.; Pacheco, P.M.C.L.; Kalamkarov, A.L. Micromechanical analysis of transversal strength of composite laminae. Comp. Struct. 2020, 250, 112546. [Google Scholar] [CrossRef]
- Vignoli, L.L.; Savi, M.A.; Pacheco, P.M.C.L.; Kalamkarov, A.L. Multiscale approach to predict strength of notched composite plates. Comp. Struct. 2020, 253, 112827. [Google Scholar] [CrossRef]
- Vignoli, L.L.; Savi, M.A.; Pacheco, P.M.C.L.; Kalamkarov, A.L. Micromechanical analysis of longitudinal and shear strength of composite laminae. J. Comp. Mater. 2020, 54, 4853–4873. [Google Scholar] [CrossRef]
- Jiang, H.; Ren, Y.; Jin, Q. A novel synergistic multi-scale modeling framework to predict micro- and meso-scale damage behaviors of 2D triaxially braided composite. Int. J. Damage Mech. 2022, 31, 108–141. [Google Scholar] [CrossRef]
- Liu, W.L.; Chen, P.H. Theoretical analysis and experimental investigation of the occurrence of fiber bridging in unidirectional laminates under Mode I loading. Comp. Struct. 2021, 257, 113383. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; Wang, C.; Zuo, Y.; Xin, H. Web buckling mechanism of pultruded GFRP bridge deck profiles subjected to concentrated load. Structures 2021, 34, 3789–3805. [Google Scholar] [CrossRef]
- Zhang, X.W.; Xing, H.Z.; Zhang, J.K.; Ren, M.F. Multi-scale analysis of cryogenic composite structures considering interfacial phase. J. Mech. Strength 2021, 6, 1417–1421. (In Chinese) [Google Scholar]
- Lv, Q.; Zhao, Z.; Li, C.; Zhang, C. Progressive damage and failure simulation of 2.5D woven composites. Acta Mater. Compos. Sin. 2021, 38, 2747–2757. (In Chinese) [Google Scholar]
- Wang, Y.C.; Zhou, Y.X.; Jin, C.H. An analytical nonlinear model for plain-woven composites under off-axis loads. Comp. Struct. 2022, 296, 115905. [Google Scholar] [CrossRef]
- Liu, L.B.; Zhang, X.H.; Wang, Z.B.; Wang, Y.N.; Guo, J.Z. Micromechanics Modeling of Transverse Tensile Strength for Unidirectional CFRP Composite. Materials 2022, 15, 8577. [Google Scholar] [CrossRef]
- Sha, Y.; Huang, J.; Luo, L.; Zhou, Y. Establishment and Modification of Structural Strength Calculation Model for Fiber Reinforced Titanium Matrix Composites. J. Propuls. Technol. 2023, 44, 201–210. (In Chinese) [Google Scholar]
- Wang, M. Damage and failure analysis of carbon fiber reinforced composites across macro-meso-micro scales. Ph.D. Thesis, Southeast University, Nanjing, China, 2020. (In Chinese). [Google Scholar]
- Zhang, X.W. Multi-scale analysis method of composite tanks at cryogenic temperatures considering fiber/matrix interface. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2020. (In Chinese). [Google Scholar]
- Qi, S.J. Investigation on the VAT reinforcing technique for open-hole CFRP laminates. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2020. (In Chinese). [Google Scholar]
E-Glass LY556 | E-Glass MY750 | AS4 3501-6 | T300 BSL914C | IM7 8511-7 | T300 PR319 | AS Epoxy | S2-Glass Epoxy | G400-800 5260 | |
---|---|---|---|---|---|---|---|---|---|
K12 | 1.520 | 1.491 | 1.424 | 1.430 | 1.475 | 1.510 | 1.449 | 1.500 | 1.483 |
K23 | 3.020 | 2.936 | 1.337 | 2.421 | 2.034 | 2.167 | 1.999 | 2.982 | 2.469 |
3.339 | 3.253 | 2.098 | 2.143 | 2.327 | 3.123 | 2.339 | 3.317 | 2.464 | |
2.249 | 2.181 | 1.469 | 1.570 | 1.761 | 2.035 | 1.743 | 2.172 | 1.732 | |
1.870 | 1.840 | 1.760 | 1.760 | 1.830 | 1.760 | 1.760 | 1.850 | 1.830 | |
7.690 | 7.220 | 4.950 | 5.040 | 5.410 | 6.970 | 5.430 | 7.340 | 5.680 | |
ψ | 71.80 | 71.90 | 73.90 | 73.90 | 73.40 | 72.00 | 73.30 | 71.80 | 72.80 |
h/a | 0.609 | 0.666 | 0.563 | 0.574 | 0.648 | 0.673 | 0.591 | 0.680 | 0.627 |
* | 3.660 | 3.574 | 3.733 | 3.877 | 4.486 | 4.188 | 3.953 | 3.688 | 4.024 |
* | 1.598 | 1.675 | 1.516 | 1.588 | 1.965 | 1.844 | 1.636 | 1.726 | 1.720 |
3.510 | 3.419 | 3.550 | 3.685 | 4.271 | 3.995 | 3.759 | 3.528 | 3.833 | |
* | 1.504 | 1.577 | 1.427 | 1.496 | 1.860 | 1.757 | 1.545 | 1.631 | 1.630 |
E-Glass LY556 | E-Glass MY750 | AS4 3501-6 | T300 BSL914C | IM7 8511-7 | T300 PR319 | AS Epoxy | S2-Glass Epoxy | G400-800 5260 | |
---|---|---|---|---|---|---|---|---|---|
(GPa) | 80 | 74 | 225 | 230 | 276 | 230 | 231 | 87 | 290 |
(GPa) | 80 | 74 | 15 | 15 | 19 | 15 | 15 | 87 | 19 |
0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | |
(GPa) | 33.33 | 30.8 | 15 | 15 | 27 | 15 | 15 | 36.3 | 27 |
0.2 | 0.2 | 0.07 | 0.07 | 0.36 | 0.07 | 0.07 | 0.2 | 0.357 | |
(MPa) | 2150 | 2150 | 3350 | 2500 | 5180 | 2500 | 3500 | 2850 | 5860 |
(MPa) | 1450 | 1450 | 2500 | 2000 | 3200 | 2000 | 3000 | 2450 | 3200 |
Em (GPa) | 3.35 | 3.35 | 4.2 | 4 | 4.08 | 0.95 | 3.2 | 3.2 | 3.45 |
νm | 0.35 | 0.35 | 0.34 | 0.35 | 0.38 | 0.35 | 0.35 | 0.35 | 0.35 |
(MPa) | 80 | 80 | 69 | 75 | 99 | 70 | 85 | 73 | 70 |
(MPa) | 120 | 120 | 250 | 150 | 130 | 130 | 120 | 120 | 130 |
(MPa) | 54 | 54 | 50 | 70 | 57 | 41 | 50 | 52 | 57 |
Y (MPa) | 35 | 40 | 48 | 27 | 73 | 40 | 38 | 63 | 75 |
Vf | 0.62 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Longitudinal Tensile strengths | Longitudinal Compressive Strengths | Transverse Tensile Strengths | Transverse Compressive Strengths | In-Plane Shear Strengths | Transverse Shear Strengths | Overall Error | |
---|---|---|---|---|---|---|---|
Prediction on homo-stresses | 11% | 25.1% | 241% | 65.5% | 48.1% | 105.4% | 82.7% |
Prediction on true-stresses | 11% | 25.1% | 39.2% | 23.2% | 13.1% | 14.3% | 21.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.-M. True Stress Theory of Matrix in A Composite: A Topical Review. Materials 2023, 16, 774. https://doi.org/10.3390/ma16020774
Huang Z-M. True Stress Theory of Matrix in A Composite: A Topical Review. Materials. 2023; 16(2):774. https://doi.org/10.3390/ma16020774
Chicago/Turabian StyleHuang, Zheng-Ming. 2023. "True Stress Theory of Matrix in A Composite: A Topical Review" Materials 16, no. 2: 774. https://doi.org/10.3390/ma16020774
APA StyleHuang, Z. -M. (2023). True Stress Theory of Matrix in A Composite: A Topical Review. Materials, 16(2), 774. https://doi.org/10.3390/ma16020774