1. Introduction
Selective laser sintering (SLS), one of the additive manufacturing techniques, uses computer-aided design to directly manufacture solid 3D products by sintering powder layer by layer [
1]. This process is one of the additive manufacturing techniques, which is capable of producing exceedingly sophisticated items from a wide variety of simple materials without requiring the use of any tools.
Polyamide, generally known as nylon, is one of the powders that can be utilized in laser sintering. Polyamide is a durable and flexible material resistant to abrasion and wear. It is utilized in numerous industries, including the automotive, aerospace, and medical sectors. Several academic works aiming to study the SLS process have used PA12 powder as their research subject.
Figure 1 is a simplification of each process involved in the manufacturing of SLS. Ref. [
1] provides a more in-depth overview of the SLS procedure.
The results of the SLS method include a variety of defects, such as size faults, layer delamination, porosity, and subpar material qualities [
2]. These defects could be visible in the finished products. As a result, in order to achieve the goal of regulating the process-related factors and improving the quality of the final product, it is necessary to have a comprehensive understanding of the behavior of the powder while being projected by the laser source.
The behavior of the powder particles is affected by the complicated and variable geometric shapes of the particles, which further adds to the difficulty of the issue. In order to satisfy industrial standards and produce parts of the highest quality, a particle-based numerical modeling framework is required to describe the physical interactions of the powder particles that occur during the SLS process. This is necessary to produce parts that meet the industry’s requirements.
Several different approaches have been created to numerically simulate the physical interactions in the powder bed. These approaches aim to better understand the SLS process, better manage the equipment, and optimize the associated concerns.
The bulk of numerical studies on processes based on powders that are proposed in the literature use continuous methods, which treat the powder bed as a homogenous, continuous medium. This is because continuous methods assume that the powder bed is a single medium. In addition, they use a numerical method for solving multiphysics partial differential equations, which tends to minimize the significance of the role that air plays in the SLS process by acting as a buffer between the particles.
In the work of Gusarov et al. [
3], a finite difference approach was used to model the melt. The two-flow method was employed to solve the radiative transfer equation, taking into account the diffusion and conduction heat transfer equations.
Dong et al. [
4] used a 3D model with the finite element method (FEM) to study the temperature distribution in the sintering bath during the SLS process. The study considered the latent heat of phase transformation, the effect of convection in the powder bed, and the use of a laser with a power of 8 W at a scanning speed of 0.33 m/s.
Dong et al. [
5] used the commercial software Abaqus, which uses the same numerical method to predict the temperature and density distribution of sintered polymers in the powder bed. Fisher et al. [
6] also proposed a 2D FEM model of the periodic pulses of a laser on a polymer powder.
However, all cited research works based on continuous methods (FEM, FD, etc.) have limitations when modeling granular media. These models are incapable of capturing the physical behavior of the particles in the powder bed, and they significantly underestimate the effect of the air between the particles and ignore the discontinuity of the simulated material.
Moreover, the physical interactions in the powder bed are caused by collisions between the particles. The interactions are highly dependent on the type of bonding between the particles. Due to the SLS process’ discrete character and discontinuous behavior, modeling with continuous approaches is incompatible with the procedure.
In comparison, the discrete element method (DEM) is a numerical approximation technique used to investigate granular materials. It is capable of simulating a set of particles, investigating their physical reactions based on particle contact laws, and capturing the physical interaction between particles to produce the macro behavior of the simulated medium. The discontinuous medium is treated more realistically by DEM than the continuous method, making it the optimal technique for modeling the SLS process.
Despite all the above advantages, powder bed modeling by DEM is relatively rare in the literature. An exception is a study by Steuben et al. [
7], which demonstrated the possibility of using the discrete element method in powder-based additive manufacturing processes with a relatively simple set of approximations and physical assumptions.
This paper develops a framework for thermal modeling powder-based additive manufacturing processes using the discrete element method. This framework describes in detail the steps and calculations required for the thermal simulation of particles in the powder bed.
To validate this DEM framework, it is applied to polyamide 12 (PA12) powder to study the temperature evolution at the center of the laser beam. The results are compared with experimental work by Lanzl et al. [
8] and with the results of continuous methods implemented by Yaagoubi et al. [
9].
In a second study, the effect of laser power and projection time on the temperature evolution of PA12 particles is investigated and compared with the experimental work. This model is implemented numerically in the Python programming language, following the basic steps of DEM.
The discrete element method is described in the following section.
Section 3 provides a synopsis of the suggested methodology.
Section 3 provides the mathematical model, its implementation, and its architecture. The findings and analysis are presented in
Section 4. This paper is concluded in
Section 5.
2. Discrete Element Method
The granular medium is represented in the discrete element method by a set of particles of simple geometric shape. Generally, spheres are treated independently as solids. These particles interact with each other through the laws of contact and friction between the particles. This discrete method is often used to simulate granular media because it describes their kinematics and discontinuous aspects in a natural way.
The particle model for mechanical problems was first used in geomechanics by Cundall [
10] in 1979. Later, it was treated in a general and detailed way by Oñate et al. [
11].
Currently, most of the literature concerning DEM is performed in geomechanics and rock mechanics. However, the method is rarely used to study additive manufacturing processes, especially powder-based, despite the suitability of DEM for the SLS process.
Figure 2 shows the variables associated with the mechanics of contact between particles in a powder bed. Each particle is described by cartesian components
representing its center of mass, and the vector describing the coordinates of a particle
is denoted by
. The corresponding particle velocity, acceleration, and force vectors are represented by
,
, and
, respectively. The normal and tangential directions are denoted by
and
, respectively, and
represents the overlap between particles
and
.
Unlike other authors in [
12,
13] who utilize more complex geometries (ellipses and polyhedra), we used spherical particles, as shown in
Figure 2. Spherical particles are preferred because of their straightforward geometry, which is identifiable and can be established using just two parameters: the radius and the particle center’s coordinates.
Additionally, because particle contact detection configurations are straightforward, the approximation is efficient in terms of memory usage and computing code. Because the stiffness of the contact between particles depends on the collision curvature and the particles are vulnerable to rotations that can alter their behavior in the simulation, this sphere/disc geometry is not usually used. Therefore, it is important to apply this approximation carefully.
The main conceptual element of the discrete element method is based on three steps, as shown in
Figure 3.
2.1. Preliminary Steps
The geometry of the studied medium is represented by hundreds, thousands, and millions of discrete particles filling the modeled space. This geometry forms the simulation domain according to each application or use, such as the representation of bulk materials in tanks, containers, soils, and rocks.
Once the discrete elements form the geometry of the medium, we need to define all the necessary characteristic parameters that provide information about the geometry and all the material properties.
We also need to select the time step, taking into account several criteria:
The precision of the simulations: a small-time step is essential for precise and detailed solutions.
The duration of the simulation: if the simulation is too long, a larger time step is required.
The influence of the chosen integration scheme: explicit schemes are most commonly used in the literature, and the critical time step limits the selected time step.
2.2. Contact Search
The search for contact between particles is the most critical and challenging part of discrete element modeling in terms of the computational effort (60% to 90% of simulation time), especially for non-spherical particles. For this, we need a strategy to manage the set of contacts since it is impossible to perform a collision test for each particle with all other particles in the simulation domain.
In the literature, several techniques exist to spatially partition the domain so that collisions are defined by a neighborhood approach to minimize the number of collision tests. The most common strategies for spatial partitioning include a grid-based method, a tree-based algorithm (K-D-tree, quad-tree, and oct-tree), and a non-binary search method. Recommended references for collision detection methods are [
14,
15,
16,
17].
2.3. Contact Laws
2.3.1. Mechanical Contact Law
Once the particle collision has been confirmed, the proper contact relationship must be identified in order to record the material’s constitutive response.
Figure 2 illustrates how the discrete numerical model calculates the contact force using only the normal and tangential displacement.
Generally speaking, the formulations that describe the typical interactions between the spheres are as follows:
The simplest form of the normal force is for the classical linear spring (Hooke’s law):
where
is the normal stiffness coefficient,
is the normal unit vector connecting the centers of the particles. Where
represents the overlap between the two spheres defined in
Figure 2, i.e., the interpenetration distance between particles
and
, calculated using the following formula:
With , and representing the Euclidean norm of any vector. In addition, et are the radii of particles i and j, and , ∈ {i, j}, is the position vector of the center of mass of the kth particle.
A Hertzian formulation of the normal force between two spheres:
where
is the normal stiffness coefficient,
is the normal unit vector connecting the centers of the particles, and
represents the overlap between the two spheres defined in
Figure 2, i.e., the interpenetration distance between particles
and
, where
, with
, and
represents the Euclidean norm of any vector. In addition,
et
are the radii of particles
i and
j, and
,
∈ {
i,
j}, is the position vector of the center of mass of the kth particle.
For the shear force, we have the simple formulation used by [
7], where the tangential force is a function of the normal force:
with
as a Coulomb friction coefficient,
and
are the velocity vectors of particles
and
participating in the collision.
In a powder bed containing multiple particles, each particle may be in contact with numerous particles simultaneously. Therefore, the resulting force on the particle
is written as follows:
According to [
18], we can simplify the effect of the tangential force in the case where the average diameter of the particle is less than 50 μm and the velocity is low, so the equation of the force applied on the particle
i becomes:
where
g is the gravitational force.
2.3.2. Thermal Contact Law
In addition to the mechanical generation, the particle system is also engaged in thermal transfer, as shown in
Figure 4, which is the exchange of heat between particles.
The heat transfer in the case of particle-particle contact can be considered as pure conduction [
7], and neglecting radiation or convection effects, in this case the heat flow from particle
to particle
has the following form:
where
and
are the temperatures of particles
i and
j, respectively, and
is a thermal conduction coefficient between particles. This coefficient necessarily depends on the particles’ physical properties, size, and interpenetration distance.
For particles located on the upper surface of the powder bed, the effects of convection and radiation from the ambient air are added to the total heat flow on these particles.
2.4. Time Step Integration
After determining the thermal and mechanical influences for each particle in the system, it is necessary to propagate these influences in the motion of the particle system and increase the DEM simulation over time.
For discontinuity simulations, explicit time step integration is most frequently utilized in the literature. As demonstrated by [
19], who suggested performing a comparison analysis of the most popular explicit time integration schemes in order to provide a clear overview of these schemes and select the best integration scheme for discontinuity modeling.
4. Results and Discussion
We modeled the temperature evolution at the laser beam’s center of PA12 powder, which is typically utilized in the SLS process, using the Python computer language, following the DEM framework for thermal modeling of the SLS procedure (
Figure 10).
We compared our findings to an intriguing experimental setup by [
8], where the temperature evolution of PA12 particles was examined in a DSC chip with properties similar to the laser used in SLS machines. This comparison served to validate our DEM framework.
Our findings are contrasted with those of [
9], who used COMSOL software to predict the PA12 powder bed’s temperature evolution continuously.
All of these assignments were done under the following conditions: The laser power is 1.7 watts, the preheating temperature is 170 degrees Celsius, and all other circumstances are identical to those in
Table 1. Due to the minimal difference between the preheating temperature and the sintering temperature, a low-power laser is chosen.
Figure 10 illustrates the temperature increase within the laser spot on the bed surface as a result of our DEM simulation. At the end of the simulation, the temperature is approximately 316 degrees Celsius, which is higher than the liquidus temperature of the PA12 powder, which is 300 degrees Celsius (300 °C). Because of the high input energy (
p = 1.7 W) and the tiny diameter of the laser beam (
), which led to a high energy concentration on the particles, this simulation generated a significant temperature increase during the duration of the simulation. Because of the continuous loss of thermal energy and the constant laser power throughout the simulations, the figure demonstrates that the progression of the temperature over time is nearly linear. This can be attributed to the fact that the simulations were run with constant laser power.
Our simulation result is compared with the works of [
8,
9] in
Figure 11 to check the agreement of our DEM simulation with these works and evaluate the capabilities of DEM to simulate SLS processes.
Figure 11 demonstrates a strong agreement between our DEM simulation and the experimental result as well as the FEM simulation. The peak temperature attained at the end of the simulations (
) is very similar in all three simulations, and the temperature evolution is very similar across the three results.
To illustrate the behavior of the PA12 particles in the DEM simulation,
Figure 12 shows a view of the temperature evolution for each particle in the region under the laser beam projection for three different time steps. At τ = 0.001 s, the temperature in the powder bed is low, and the distribution is confined to the particles scanned by the laser.
Due to the low thermal conductivity of the PA12 grains, the medium becomes more homogeneous over time as the temperature in the bed rises. However, this process is gradual because of the heat transmission between the particles and surfaces.
In the second study, we will study the impact of the laser’s power and projection time on the temperature of the domain using the discrete element method. For this, the identical powder (PA12) will be simulated under a static laser source with two different laser powers (0.9 W and 0.6 W), while maintaining the other parameters listed in
Table 1.
The results are displayed in
Figure 13, which highlights the effect of laser power and scan duration on temperature evolution in the field. Particle temperature increases noticeably, reaching 250 °C at a power of 0.9 W and 200 °C at a power of 0.6 W.
The temperature evolution of the PA12 powder under two different laser powers is compared in
Figure 14 with Lanzl’s experimental study [
8].
The left curve (a) shows the temperature evolution of the PA12 powder from our simulation DEM and the two experimental tests of Lanzl under the same laser power of 0.9 W for different exposure times.
We can see a good agreement between our simulation and the experimental results since the evolution curve of our DEM simulation always lies between the two tests.
For a lower laser power, we have the temperature evolution in the right curve (b) with a laser power of 0.6 W. This gives us repeatable results, where the temperature evolution is practically the same for both works with a tiny margin of error.
The exciting comparison in both studies confirms the DEMs ability to model the powder’s thermal behavior under the projection of a laser and demonstrates the accuracy of the discrete element method for modeling the SLS process.
5. Conclusions
This study introduces a DEM framework for the thermal simulation of powder-based additive manufacturing processes. A comprehensive framework presents the computations required to characterize the particle interactions in the powder bed. The simulation of a polyamide 12 domain using this framework to predict the evolution of the maximum domain temperature under the static action of a laser point demonstrated its utility for the SLS process.
Using the system depicted in
Figure 9, we could monitor the temporal evolution of the PA12 particle temperature. Among the particles of interest were those in the laser range, whose temperature evolution throughout the simulation was reasonably linear. The results were in remarkable agreement with the experimental data collected by Lanzl and the FEM results applied by Yaagoubi on the COMSOL program.
To demonstrate the effects of the laser power and scan length on the temperature evolution of the particle system, a second investigation using this DEM framework was undertaken on the same PA12 particle domain using different laser powers. In addition, we compared these results to Lanzl’s experimental design, which found a comparable level of convergence with a slightly higher margin of error.
These studies demonstrate that our DEM framework can simulate and capture the spatial and temporal thermal distributions of a particle system subjected to the projection of a heat source.
These interesting results will help in the development of a code that incorporates the majority of physical occurrences into the SLS approach, which will be the subject of further research in the near future.