Synthesis and Characterisation of Monolacunary Keggin Monovanado-deca-tungstophosphate and Its Complexes with Transition Metal Cations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of K8[PVW10O39]·15H2O (L)
2.2. Determination of Optimal Reaction Conditions for the Synthesis of Complexes 1–5
2.3. Synthesis of K6[MnPVW10O39(H2O)]·14H2O (1)
2.4. Synthesis of K5[FePVW10O39(H2O)]·11H2O (2)
2.5. Synthesis of K6[CoPVW10O39(H2O)]·21H2O (3)
2.6. Synthesis of K6[NiPVW10O39(H2O)]·19H2O (4)
2.7. Synthesis of K6[CuPVW10O39(H2O)]·14H2O (5)
3. Results and Discussions
3.1. Determination of Optimal Reaction Conditions for the Synthesis of Complexes 1–5
3.2. Thermogravimetric Study of Ligand L and Complexes 1–5
3.3. FT-IR Study
3.4. Raman Study
3.5. UV-VIS Study
3.6. Powder XRD Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pope, M.T.; Jeannin, Y.; Fournier, M. Heteropoly and Isopoly Oxometalates; Springer: Berlin/Heidelberg, Germany, 1983; Volume 8. [Google Scholar]
- Pope, M.T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem. Int. Ed. Engl. 1991, 30, 34–48. [Google Scholar] [CrossRef]
- Dey, C. Polyoxometalate Clusters: Inorganic Ligands for Functional Materials. J. Clust. Sci. 2022, 33, 1839–1856. [Google Scholar] [CrossRef]
- Mizuno, N.; Nakagawa, Y.; Yamaguchi, K. Bis (μ-hydroxo) bridged di-vanadium-catalyzed selective epoxidation of alkenes with H2O2. J. Mol. Catal. A Chem. 2006, 251, 286–290. [Google Scholar] [CrossRef]
- Neumann, R. Polyoxometalate Complexes in Organic Oxidation Chemistry. In Progress in Inorganic Chemistry; The Weizmann Institute of Science: Rehovot, Israel, 1997; pp. 317–370. [Google Scholar]
- Park, D.R.; Song, S.H.; Hong, U.G.; Seo, J.G.; Jung, J.C.; Song, I.K. Redox Properties and Catalytic Oxidation Activities of Polyatom-Substituted H n PW11M1O40 (M = V, Nb, Ta, and W) Keggin Heteropolyacid Catalysts. Catal. Lett. 2009, 132, 363–369. [Google Scholar] [CrossRef]
- Yadollahi, B. Catalytic conversion of sulfides to sulfoxides by the [PZnMo2W9O39] 5− polyoxometalate. Chem. Lett. 2003, 32, 1066–1067. [Google Scholar] [CrossRef]
- Rudnitskaya, A.; Evtuguin, D.V.; Gamelas, J.A.; Legin, A. Multisensor system for determination of polyoxometalates containing vanadium at its different oxidation states. Talanta 2007, 72, 497–505. [Google Scholar] [CrossRef]
- Sami, P.; Rajasekaran, K. Studies on electron transfer reactions of Keggin-type mixed addenda heteropolytungstovanadophosphates with NADH. J. Chem. Sci. 2009, 121, 155–161. [Google Scholar] [CrossRef]
- Rhule, J.T.; Hill, C.L.; Judd, D.A.; Schinazi, R.F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–358. [Google Scholar] [CrossRef]
- Petrehele, A.I.G.; Rusu, D.; Sipos, M.A.; Fodor, A.; Rusu, M. Polyoxometalates of Keggin Type with Mixed Addenda Used as Fertilizers for Triticale Seeds. Rev. Chim. 2012, 63, 1223–1227. [Google Scholar]
- Nomiya, K.; Ohta, K.; Sakai, Y.; Hosoya, T.-A.; Ohtake, A.; Takakura, A.; Matsunaga, S. Vanadium (V) Substituted Dodecatungstophosphates in Inorganic Syntheses Vanadium (V) Substituted Dodecatungstophosphates in Inorganic Syntheses 27 2007. Bull. Chem. Soc. Jpn. 2013, 86, 800–812. [Google Scholar] [CrossRef]
- Cowan, J.J.; Bailey, A.J.; Heintz, R.A.; Do, B.T.; Hardcastle, K.I.; Hill, C.L.; Weinstock, I.A. Formation, isomerization, and derivatization of Keggin tungstoaluminates. Inorg. Chem. 2001, 40, 6666–6675. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Sang, X. Synthesis and conductivity of solid high-proton conductor H5GeW10MoVO40· 21H2O. Mater. Res. Bull. 2005, 40, 405–410. [Google Scholar] [CrossRef]
- Diaz, J.; Pizzio, L.R.; Pecchi, G.; Campos, C.H.; Azocar, L.; Briones, R.; Romero, R.; Henriquez, A.; Gaigneaux, E.M.; Contreras, D. Tetrabutyl Ammonium Salts of Keggin-Type Vanadium-Substituted Phosphomolybdates and Phosphotungstates for Selective Aerobic Catalytic Oxidation of Benzyl Alcohol. Catalysts 2022, 12, 507. [Google Scholar] [CrossRef]
- Wang, K.; Feng, S.; Ma, P. Synthesis, characterization and photoluminescence properties of an organic-inorganic hybrid monolacunary Keggin-type polyoxotungstate. Inorg. Chem. Commun. 2021, 129, 108621. [Google Scholar] [CrossRef]
- Sasca, V.; Stefanescu, M.; Popa, A. Thermal behavior of the polyoxometalates derived from H 3 PMo 12 O 40 and H 4 PVMo 11 O 40. J. Therm. Anal. Calorim. 2003, 72, 311–322. [Google Scholar] [CrossRef]
- Chen, F.; Xu, H.; Cai, Y.; Zhang, W.; Shen, P.; Zhang, W.; Xie, H.; Bai, G.; Xu, S.; Gao, J. Multi-Responsive Sensor Based on Porous Hydrogen-Bonded Organic Frameworks for Selective Sensing of Ions and Dopamine Molecules. Molecules 2022, 27, 8750. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202. [Google Scholar] [CrossRef]
- Rusu, D.; Baban, O.; Hauer, I.; Gligor, D.; David, L.; Rusu, M. Synthesis and Characterization of the Potassium 11-Tungstovanado (IV) Phosphate. Rev. Roum. Chim 2010, 55, 843–850. [Google Scholar]
- An, H.; Zhang, Y.; Hou, Y.; Hu, T.; Yang, W.; Chang, S.; Zhang, J. Hybrid dimers based on metal-substituted Keggin polyoxometalates (metal = Ti, Ln) for cyanosilylation catalysis. Dalton Trans. 2018, 47, 9079–9089. [Google Scholar] [CrossRef]
- Mir, S.; Yadollahi, B.; Omidyan, R. Theoretical comparative survey on the structure and electronic properties of first row transition metal substituted Keggin type polyoxometalates. J. Solid State Chem. 2022, 305, 122667. [Google Scholar] [CrossRef]
- Murugesan, R.; Sami, P.; Jeyabalan, T.; Shunmugasundaram, A. Synthesis, spectroscopic characterization and redox properties of titanium and vanadium substituted Keggin-type heteropolyanions. Transit. Met. Chem. 1998, 23, 583–588. [Google Scholar] [CrossRef]
- Shivaiah, V.; Das, S.K. Synthesis and characterization of a reduced heteropoly-tungstovanadate:(NH4) 7 [VvO4W 10 IV V 2 IV O36]. ca. 22H2O. J. Chem. Sci. 2002, 114, 107–114. [Google Scholar] [CrossRef]
- David, L.; Crăciun, C.; Rusu, M.; Rusu, D.; Cozar, O. Spectroscopic and magnetic investigation of the K 5 [PMo 2 VW 9 O 40]· 24H 2 O heteropolyoxometalate and its monoprotonated form. J. Chem. Soc. Dalton Trans. 2000, 24, 4374–4378. [Google Scholar] [CrossRef]
- Rusu, D.; CRĂCIUN, C.; Rusu, M.; PĂTRUŢ, A.; David, L. Complexes of the trilacunary Keggin arseno (V) polyoxotungstate with iron (III), cobalt (II) and nickel (II). Rev. Roum. De Chim. 2007, 52, 817–821. [Google Scholar]
- Gamelas, J.; Soares, M.; Ferreira, A.; Cavaleiro, A. Polymorphism in tetra-butylammonium salts of Keggin-type polyoxotungstates. Inorg. Chim. Acta 2003, 342, 16–22. [Google Scholar] [CrossRef]
- Ueda, T.; Nambu, J.-i.; Yokota, H.; Hojo, M. The effect of water-miscible organic solvents on the substitution reaction of Keggin-type heteropolysilicates and-germanates with vanadium (V) ion. Polyhedron 2009, 28, 43–48. [Google Scholar] [CrossRef]
- Himeno, S.; Takamoto, M.; Hoshiba, M.; Higuchi, A.; Hashimoto, M. Preparation and Characterization of an α-Keggin-Type [SW12O40] 2− Complex. Bull. Chem. Soc. Jpn. 2004, 77, 519–524. [Google Scholar] [CrossRef]
- Pinheiro, P.S.; Rocha, A.B.; Eon, J.-G.; Floro Bonfim, R.d.P.; Sanches, S.G. Isomer distribution in alpha-Keggin structures XW12-nVnO40 (-(q plus n)) X = Si, P (0 <= n <= 4): A DFT study of free energy and vibrational spectra. Comptes Rendus Chim. 2016, 19, 1352–1362. [Google Scholar]
- Farhadi, S.; Mahmoudi, F.; Kucerakova, M.; Rohlicek, J.; Dusek, M. New hybrid nanostructures based on keggin-type 12-tungstophosphate and some metal-semicarbazone complexes: Synthesis, x-ray crystal structures and spectroscopic studies. J. Mol. Struct. 2020, 1217, 128385. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Zhang, L.; Sang, X.; You, W. Determination of the stability constant of cobalt-substituted mono-lacunary Keggin-type polyoxometalate and its electrocatalytic water oxidationperformance. J. Coord. Chem. 2017, 70, 2950–2957. [Google Scholar] [CrossRef]
- Atrian-Blasco, E.; de Cremoux, L.; Lin, X.; Mitchell-Heggs, R.; Sabater, L.; Blanchard, S.; Hureau, C. Keggin-type polyoxometalates as Cu(ii) chelators in the context of Alzheimer’s disease. Chem. Commun. 2022, 58, 2367–2370. [Google Scholar] [CrossRef] [PubMed]
- Tandekar, K.; Garai, S.; Supriya, S. A Reversible Redox Reaction in a Keggin Polyoxometalate Crystal Driven by Visible Light: A Programmable Solid-State Photochromic Switch. Chem.—A Eur. J. 2018, 24, 9747–9753. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, M.; Komatsu, H.; Ozuka, S.; Ogura, K. Cathodic deposition of molybdenum and vanadium mixed oxyhydroxide films from V-substituted polymolybdophosphate. Electrochim. Acta 2005, 51, 274–280. [Google Scholar] [CrossRef]
- Maestre, J.M.; Lopez, X.; Bo, C.; Poblet, J.-M.; Casan-Pastor, N. Electronic and magnetic properties of α-keggin anions: A DFT Study of [XM12O40] n-,(M= W, Mo; X= AlIII, SiIV, PV, FeIII, CoII, CoIII) and [SiM11VO40] m-(M= Mo and W). J. Am. Chem. Soc. 2001, 123, 3749–3758. [Google Scholar] [CrossRef]
- Huang, W.; Todaro, L.; Yap, G.P.; Beer, R.; Francesconi, L.C.; Polenova, T. 51V Magic Angle Spinning NMR Spectroscopy of Keggin Anions [PV n W12-n O40](3+ n)-: Effect of Countercation and Vanadium Substitution on Fine Structure Constants. J. Am. Chem. Soc. 2004, 126, 11564–11573. [Google Scholar] [CrossRef]
- Kato, C.N.; Nakahira, I.; Kasai, R.; Mori, S. Syntheses, Molecular Structures, and Countercation-Induced Structural Transformation of Monomeric alpha-Keggin-Type Polyoxotungstate-Coordinated Mono- and Dipalladium(II) Complexes. Eur. J. Inorg. Chem. 2021, 2021, 1816–1827. [Google Scholar] [CrossRef]
- Malmir, M.; Heravi, M.M.; Yekke-Ghasemi, Z.; Mirzaei, M. Incorporating heterogeneous lacunary Keggin anions as efficient catalysts for solvent-free cyanosilylation of aldehydes and ketones. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Neumann, M.A. X-Cell: A novel indexing algorithm for routine tasks and difficult cases. J. Appl. Crystallogr. 2003, 36, 356–365. [Google Scholar] [CrossRef] [Green Version]
- Klug, H.P. LE Alexander X-ray diffraction procedures. John Wiley 1974, 1, 687–707. [Google Scholar]
- Contreras Coronel, N.; da Silva, M.J. Lacunar Keggin Heteropolyacid Salts: Soluble, Solid and Solid-Supported Catalysts. J. Clust. Sci. 2018, 29, 195–205. [Google Scholar] [CrossRef]
- Boultif, A.; Louër, D. Powder pattern indexing with the dichotomy method. J. Appl. Crystallogr. 2004, 37, 724–731. [Google Scholar] [CrossRef]
- Fernandes, S.; Mirante, F.; Castro, B.d.; Granadeiro, C.M.; Balula, S.S. Lindqvist versus Keggin-Type Polyoxometalates as Catalysts for Effective Desulfurization of Fuels. Catalysts 2022, 12, 581. [Google Scholar] [CrossRef]
- Li, X.K.; Zhao, J.; Ji, W.J.; Zhang, Z.B.; Chen, Y.; Au, C.T.; Han, S.; Hibst, H. Effect of vanadium substitution in the cesium salts of Keggin-type heteropolyacids on propane partial oxidation. J. Catal. 2006, 237, 58–66. [Google Scholar] [CrossRef]
- Gromov, N.V.; Medvedeva, T.B.; Lukoyanov, I.A.; Panchenko, V.N.; Timofeeva, M.N.; Taran, O.P.; Parmon, V.N. Formic Acid Production via One-Pot Hydrolysis-Oxidation of Starch over Quaternary Ammonium Salts of Vanadium-Containing Keggin-Type Heteropoly Acids. Catalysts 2022, 12, 1252. [Google Scholar] [CrossRef]
- Ighilahriz-Boubchir, K.; Boutemeur-Kheddis, B.; Rabia, C.; Makhloufi-Chebli, M.; Hamdi, M.; Silva, A.M.S. Recyclable Keggin Heteropolyacids as an Environmentally Benign Catalyst for the Synthesis of New 2-Benzoylamino-N-phenyl-benzamide Derivatives under Microwave Irradiations at Solvent-Free Conditions and the Evaluation of Biological Activity. Molecules 2018, 23, 8. [Google Scholar] [CrossRef]
- Lu, N.; Sun, M.; Wei, X.; Zhang, P.; Zhang, Z. Facile Synthesis of Lacunary Keggin-Type Phosphotungstates-Decorated g-C3N4 Nanosheets for Enhancing Photocatalytic H2 Generation. Polymers 2020, 12, 1961. [Google Scholar] [CrossRef] [PubMed]
- Tandekar, K.; Tripathi, A.; Prasad, M.D.; Supriya, S. Keggin based self-assembled mesoporous materials for the capture of selective guest molecules. Mater. Adv. 2022, 3, 5521–5531. [Google Scholar] [CrossRef]
Thermogravimetric Process | L | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|---|
DTA (°C) | Endothermic | 62 | 80.5 | 75.5 | 83 | 88 | 71 |
107 | 113.5 | 118 | 178 | 164 | |||
Exothermic | 275 | 344.5 | 344.5 | 356 | 360 | 339.5 | |
Endothermic | 500 | 457.5 | 460.5 | 468 | 479 | 540 | |
500 | 550 | 521 | 546.5 | ||||
DTG (°C) | 54.5 | 77 | 68.5 | 79 | 80.5 | 67 | |
98.5 | 155 | 106 | 111 | 117.5 | 104.5 | ||
154.5 | 350 | 163 | 167 | 173.5 | 158.5 | ||
295 | 339 | 350.5 | 332 | ||||
TG | Weight lost (%) | 8.69 | 8.78 | 6.83 | 12.15 | 10.65 | 7.76 |
0.58 | 0.62 | 0.58 | 0.56 | 0.97 | |||
H2O no. molecules | 15 | 14 | 11 | 21 | 19 | 14 | |
1 | 1 | 1 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrehele, A.I.G.; Duteanu, N.; Morgovan, M.C.; Filip, S.M.; Ciocan, S.; Marian, E. Synthesis and Characterisation of Monolacunary Keggin Monovanado-deca-tungstophosphate and Its Complexes with Transition Metal Cations. Materials 2023, 16, 827. https://doi.org/10.3390/ma16020827
Petrehele AIG, Duteanu N, Morgovan MC, Filip SM, Ciocan S, Marian E. Synthesis and Characterisation of Monolacunary Keggin Monovanado-deca-tungstophosphate and Its Complexes with Transition Metal Cations. Materials. 2023; 16(2):827. https://doi.org/10.3390/ma16020827
Chicago/Turabian StylePetrehele, Anda Ioana Gratiela, Narcis Duteanu, Mona Claudia Morgovan, Sanda Monica Filip, Stefania Ciocan, and Eleonora Marian. 2023. "Synthesis and Characterisation of Monolacunary Keggin Monovanado-deca-tungstophosphate and Its Complexes with Transition Metal Cations" Materials 16, no. 2: 827. https://doi.org/10.3390/ma16020827
APA StylePetrehele, A. I. G., Duteanu, N., Morgovan, M. C., Filip, S. M., Ciocan, S., & Marian, E. (2023). Synthesis and Characterisation of Monolacunary Keggin Monovanado-deca-tungstophosphate and Its Complexes with Transition Metal Cations. Materials, 16(2), 827. https://doi.org/10.3390/ma16020827