Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. TMF Behaviors
3.2. Fracture Analysis
4. Discussion
4.1. Microstructural Evolution during TMF
4.2. TMF Lifetime Prediction
5. Conclusions
- During TMF loading, asymmetrical hysteresis loops were observed in both alloys and the tensile portion was higher than the compression portion due to out-of-phase cycling;
- Cyclic softening behavior was observed for the maximum stress in both alloys, but the rate of decrease in the cyclic stress in the 356 alloy was greater than that in the 319 alloy, especially at higher strain amplitudes. Moreover, the 356 alloy presented an earlier inflection point in the cyclic evolution of the cyclic stress;
- The TMF resistance decreased with increasing strain amplitudes. The 319 alloy exhibited a longer TMF lifetime than the 356 alloy, especially at higher strain amplitudes;
- The precipitates in both alloys coarsened during TMF cycling. The coarsening rate of the β′-MgSi in the 356 alloy per cycle was higher than that of the θ′-Al2Cu in the 319 alloy and increased at higher strain amplitudes;
- The fatigue lifetime predicted using the energy-based model corresponded well with the experimental results, exhibiting a low life prediction factor of 1.3. However, the material parameters varied with the alloys, and the 356 alloy exhibited a lower fatigue damage capacity (W0) and a higher fatigue damage exponent (β).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, H. An overview of the development of Al-Si-Alloy based material for engine applications. JMEP 2003, 12, 288–297. [Google Scholar] [CrossRef]
- Cole, G.; Sherman, A. Light weight materials for automotive applications. Mater. Charact. 1995, 35, 3–9. [Google Scholar] [CrossRef]
- Garat, M.; Laslaz, G. Improved Aluminium Alloys for Common Rail Diesel Cylinder Heads. 2007. Available online: https://www.researchgate.net/publication/284890980_Improved_aluminum_alloys_for_common_rail_diesel_cylinder_headsJ (accessed on 30 June 2022).
- Javidani, M.; Larouche, D. Application of cast Al–Si alloys in internal combustion engine components. Int. Mater. Rev. 2014, 59, 132–158. [Google Scholar] [CrossRef]
- Grieb, M.; Christ, H.-J.; Plege, B. Thermomechanical fatigue of cast aluminium alloys for cylinder head applications–experimental characterization and life prediction. Procedia Eng. 2010, 2, 1767–1776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, Z.; Han, Y.; Zheng, Y.; Zhang, D. Experimental and theoretical studies on thermo-mechanical fatigue test for aluminium cast alloy. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 110–118. [Google Scholar] [CrossRef]
- Mattos, J.; Uehara, A.; Sato, M.; Ferreira, I. Fatigue properties and micromechanism of fracture of an alsimg0.6 cast alloy used in diesel engine cylinder head. Procedia Eng. 2010, 2, 759–765. [Google Scholar] [CrossRef]
- Azadi, M. Effects of strain rate and mean strain on cyclic behavior of aluminum alloys under isothermal and thermo-mechanical fatigue loadings. Int. J. Fatigue 2013, 47, 148–153. [Google Scholar] [CrossRef]
- Azadi, M.; Shirazabad, M. Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy. Mater. Des. 2013, 45, 279–285. [Google Scholar] [CrossRef] [Green Version]
- Engler-Pinto, C.; Sehitoglu, H.; Maier, H.; Foglesong, T. Thermo-Mechanical Fatigue Behavior of Cast 319 Aluminum Alloys. In European Structural Integrity Society; Rémy, L., Petit, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2002; pp. 3–13. [Google Scholar]
- Huter, P.; Oberfrank, S.; Grün, F.; Stauder, B. Thermo-mechanical fatigue influence of copper and silicon on hypo-eutectic Al–Si–Cu and Al–Si–Mg cast alloys used in cylinder heads. Int. J. Fatigue 2016, 88, 142–155. [Google Scholar] [CrossRef]
- May, A.; Belouchrani, M.; Taharboucht, S.; Boudras, A. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated. Procedia Eng. 2010, 2, 1795–1804. [Google Scholar] [CrossRef]
- Toda, H.; Fukunaga, T.; Kobayashi, M. Improvement of thermomechanical fatigue life in an age-hardened aluminum alloy. Scr. Mater. 2009, 60, 385–387. [Google Scholar] [CrossRef]
- Sehitoglu, H.; Emgler-Pinto, C.; Maier, H.; Foglesong, T. Thermomechanical deformation of AL319 Alloys with different iron contents. In Proceedings of the CAMP 2002—High Temperature Fatigue, Bad Lippspringe, Germany, 3–4 April 2002; pp. 76–83. [Google Scholar]
- Wang, Q.; Apelian, D.; Lados, D. Fatigue behavior of A356-T6 aluminum cast alloys. Part I. Effect of casting defects. J. Light Met. 2001, 1, 73–84. [Google Scholar] [CrossRef]
- Firouzdor, V.; Rajabi, M.; Nejati, E.; Khomamizadeh, F. Effect of microstructural constituents on the thermal fatigue life of A319 aluminum alloy. Mater. Sci. Eng. A 2007, 454–455, 528–535. [Google Scholar] [CrossRef]
- Wang, M.; Pang, J.; Liu, X.; Wang, J.; Liu, Y.; Li, S.; Zhang, Z. Optimization of Thermo-Mechanical Fatigue Life for Eutectic Al–Si Alloy by the Ultrasonic Melt Treatment. Materials 2022, 15, 7113. [Google Scholar]
- Moizumi, K.; Mine, K.; Tezuka, H.; Sato, T. Influence of Precipitate Microstructures on Thermal Fatigue Properties of Al-Si-Mg Cast Alloys. Mater. Sci. Forum 2002, 396–402, 1371–1376. [Google Scholar] [CrossRef]
- Beck, T.; Löhe, D.; Luft, J.; Henne, I. Damage mechanisms of cast Al–Si–Mg alloys under superimposed thermal–mechanical fatigue and high-cycle fatigue loading. Mater. Sci. Eng. A 2007, 468–470, 184–192. [Google Scholar] [CrossRef]
- Toyoda, M.; Toda, H.; Ikuno, H.; Kobayashi, T.; Kobayashi, M.; Matsuda, K. Preferential orientation of precipitates during thermomechanical cyclic loading in an aluminum alloy. Scr. Mater. 2007, 56, 377–380. [Google Scholar] [CrossRef]
- Tabibian, S.; Charkaluk, E.; Constantinescu, A.; Szmytka, F.; Oudin, A. TMF–LCF life assessment of a Lost Foam Casting A319 aluminum alloy. Int. J. Fatigue 2013, 53, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Tsuyoshi, T.; Sasaki, K. Low cycle thermal fatigue of aluminum alloy cylinder head in consideration of changing metrology microstructure. Procedia Eng. 2010, 2, 767–776. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Racine, D.; Liu, K.; Chen, X.-G. Strain-controlled thermo-mechanical fatigue testing of aluminum alloys using the gleeble 3800 system. In Proceedings of the 16th International Aluminum Alloys Conference (ICAA 16), Canadian Institute of Mining, Metallurgy & Petroleum, Montreal, QC, Canada, 17–21 June 2018; pp. 1–9, Paper no. 401895. [Google Scholar]
- Chen, S.; Liu, K.; Chen, X. Precipitation behavior of dispersoids and elevated-temperature properties in Al–Si–Mg foundry alloy with Mo addition. J. Mater. Res. 2019, 34, 3071–3081. [Google Scholar] [CrossRef]
- Jin, L.; Liu, K.; Chen, X. Evolution of dispersoids and their effects on elevated-temperature strength and creep resistance in Al-Si-Cu 319 cast alloys with Mn and Mo additions. Mater. Sci. Eng. A 2020, 770, 138554. [Google Scholar] [CrossRef]
- Farkoosh, A.; Chen, X.G.; Pekguleryuz, M. Dispersoid strengthening of a high temperature Al–Si–Cu–Mg alloy via Mo addition. Mater. Sci. Eng. A 2015, 620, 181–189. [Google Scholar] [CrossRef]
- Liu, K.; Mirza, F.; Chen, X. Effect of Overaging on the Cyclic Deformation Behavior of an AA6061 Aluminum Alloy. Metals 2018, 8, 528. [Google Scholar] [CrossRef] [Green Version]
- Baldan, A. Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J. Mater. Sci. 2002, 37, 2171–2202. [Google Scholar] [CrossRef]
- Chen, Y.; Doherty, R. On the growth kinetics of plate-shaped precipitates in aluminium-copper and aluminium-gold alloys. Scr. Metall. 1977, 11, 725–729. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, G.; Ding, X.; Sun, J.; Chen, K. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates. Mater. Sci. Eng. A 2003, 344, 113–124. [Google Scholar] [CrossRef]
- Nakajima, T.; Takeda, M.; Endo, T. Accelerated coarsening of precipitates in crept Al–Cu alloys. Mater. Sci. Eng. A 2004, 387–389, 670–673. [Google Scholar] [CrossRef]
- Yassar, R.; Field, D.; Weiland, H. The effect of cold deformation on the kinetics of the β″ precipitates in an Al-Mg-Si alloy. Metall. Mat. Trans. A 2005, 36, 2059–2065. [Google Scholar] [CrossRef]
- Neu, R.; Sehitoglu, H. Thermomechanical fatigue, oxidation, and Creep: Part II. Life prediction. MTA 1989, 20, 1769–1783. [Google Scholar] [CrossRef]
- Miller, M.; McDowell, D.; Oehmke, R. A Creep-Fatigue-Oxidation Microcrack Propagation Model for Thermomechanical Fatigue. J. Eng. Mater. Technol. 1992, 114, 282–288. [Google Scholar] [CrossRef]
- Eichlseder, W.; Winter, G.; Farrahi, G.; Azadi, M. The Effect of Various Parameters on Out-of-phase Thermo-mechanical Fatigue Lifetime of A356.0 Cast Aluminum Alloy. Int. J. Eng. 2013, 26, 1461–1470. [Google Scholar]
- Wang, M.; Pang, J.; Zhang, M.; Liu, H.; Li, S.; Zhang, Z. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy. Mater. Sci. Eng. A 2018, 715, 62–72. [Google Scholar] [CrossRef]
- Gocmez, T.; Awarke, A.; Pischinger, S. A new low cycle fatigue criterion for isothermal and out-of-phase thermomechanical loading. Int. J. Fatigue 2010, 32, 769–779. [Google Scholar] [CrossRef]
- Riedler, M.; Leitner, H.; Prillhofer, B.; Winter, G.; Eichlseder, W. Lifetime simulation of thermo-mechanically loaded components. Meccanica 2007, 42, 47–59. [Google Scholar] [CrossRef]
- Wang, M.; Pang, J.; Liu, H.; Li, S.; Zhang, M.; Zhang, Z. Effect of constraint factor on the thermo-mechanical fatigue behavior of an Al-Si eutectic alloy. Mater. Sci. Eng. A 2020, 783, 139279. [Google Scholar] [CrossRef]
- Farrahi, G.; Azadi, M.; Winter, G.; Eichlseder, W. A new energy-based isothermal and thermo-mechanical fatigue lifetime prediction model for aluminium–silicon–magnesium alloy. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 1323–1335. [Google Scholar] [CrossRef]
Alloy | Si | Cu | Mg | Mn | Fe | Ti | Sr | Al |
---|---|---|---|---|---|---|---|---|
319 | 5.93 | 3.34 | 0.12 | 0.284 | 0.307 | 0.11 | 0.0106 | Bal. |
356 | 7.27 | 0.60 | 0.34 | 0.206 | 0.109 | 0.21 | 0.0113 | Bal. |
Alloy | Solution Treatment | T7 Aging Treatment |
---|---|---|
319 | 495 °C/4 h + 515 °C/2 h | 200 °C/5 h |
356 | 500 °C/4 h + 540 °C/2 h |
Strain Amplitude | 319 Alloy | 356 Alloy |
---|---|---|
0.2% | 90% | 85% |
0.4% | 96% | 22% |
0.6% | 100% | 27% |
319 Alloy | 356 Alloy | |
---|---|---|
Morphology of eutectic Si | Lamellar | Globular |
Diameter of eutectic Si | 4.0 μm | 3.5 μm |
Area fraction of eutectic Si | 6.6% | 8.8% |
Area fraction of intermetallics (total) | 1.6% | 0.8% |
Alloys | Conditions | Length (nm) | Width (nm) | Number Density (μm−1) |
---|---|---|---|---|
319 (θ′-Al2Cu) | T7 before TMF | 48.1 | 4.3 | 4451.2 |
After 0.2% | 115.9 | 12.1 | 501.4 | |
After 0.4% | 83.9 | 10.0 | 789.8 | |
After 0.6% | 80.1 | 18.1 | 690.6 | |
356 (β′-MgSi) | T7 before TMF | 70.1 | 2.8 | 19144.8 |
After 0.2% | 331.1 | 14.9 | 191.1 | |
After 0.4% | 204.7 | 14.6 | 253.7 | |
After 0.6% | 204.8 | 12.6 | 394.0 |
Strain Amplitude | k Value | |
---|---|---|
319 Alloy | 356 Alloy | |
0.2% | 3.45 | 43.85 |
0.4% | 6.22 | 87.32 |
0.6% | 16.05 | 463.01 |
W0 | β | |
---|---|---|
319 alloy | 107.7 | 1.09 |
356 alloy | 5.27 | 2.28 |
319 | 356 | |||
---|---|---|---|---|
Test 1 | Test 2 | Test 1 | Test 2 | |
Experimental | 189 | 175 | 80 | 106 |
Predicted | 163 | 155 | 61 | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, K.; Wang, S.; Pan, L.; Chen, X.-G. Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys. Materials 2023, 16, 829. https://doi.org/10.3390/ma16020829
Liu K, Wang S, Pan L, Chen X-G. Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys. Materials. 2023; 16(2):829. https://doi.org/10.3390/ma16020829
Chicago/Turabian StyleLiu, Kun, Shuai Wang, Lei Pan, and X.-Grant Chen. 2023. "Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys" Materials 16, no. 2: 829. https://doi.org/10.3390/ma16020829
APA StyleLiu, K., Wang, S., Pan, L., & Chen, X. -G. (2023). Thermo-Mechanical Fatigue Behavior and Resultant Microstructure Evolution in Al-Si 319 and 356 Cast Alloys. Materials, 16(2), 829. https://doi.org/10.3390/ma16020829