Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy
Abstract
:1. Introduction
2. Material and Experimental Procedures
2.1. Sample Preparation
2.2. Sulfuric Hard Anodizing
2.3. Hardness Measurement and Fatigue Testing
2.4. Microstructural and Fracture Surface Observations
2.5. Residual Stress Measurement
3. Results
3.1. Micro-Shot Peening and Morphology
3.2. Hardness Measurements
3.3. Microstructural Observations
3.4. Fatigue Evaluation
3.5. Fractured Surface Examinations
4. Discussion
5. Conclusions
- Micro-shot peening under two Almen intensities was performed to increase the fatigue strength/life of the anodized AA 7075-T6 alloy. Micro-cracks in the anodized layer significantly deteriorated the fatigue performance of AA 7075 alloy. Under high cycle fatigue, the endurance limit of the BMA sample was lowered to less than 200 MPa. Micro-shot peening could improve the fatigue strength/life of the anodized sample to the level of the unanodized substrate (about 300 MPa). Without anodizing, the fatigue performance of the HP sample was worse than that of the LP one. Moreover, fluctuation in the fatigue strength of the HP sample, relative to the LP sample, was attributed to the inferior effect of high surface roughness.
- With an anodized layer, the fatigue strength of the HP sample was higher than that of the LP one. Pickling before anodizing eroded the outermost nanograins in the peened layer, which degraded the positive effect of micro-shot peening. Therefore, the HPA sample had higher fatigue resistance than the LPA one did. The fracture appearance of the anodized fatigued samples consisted of an observable ring of brittle fracture. Without any need for crack initiation, fatigue cracks present in the anodized layer propagated directly into the unpeened substrate, significantly reducing its fatigue strength/life. By contrast, the presence of CRS beneath the anodized layer of the micro-shot peened sample could retard the fatigue crack growth and was responsible for a noticeable increase in its fatigue performance. Moreover, interfacial separation between the anodized layer and peened surface could possibly deflect the crack path, which also contributed to the increased resistance to fatigue crack growth of the micro-shot peened sample.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lerner, L.M. Hard Anodising of Aerospace Aluminum Alloys. Trans. Inst. Met. Finish. 2010, 88, 21–24. [Google Scholar] [CrossRef]
- Matinez-Viademonte, M.P.; Abrahami, S.T.; Hack, T.; Burchardt, M.; Terryn, H. A Review on Anodizing of Aerospace Aluminum Alloys for Corrosion Protection. Coatings 2020, 10, 1106. [Google Scholar] [CrossRef]
- Barter, S.A.; Sharp, P.K.; Holden, G.; Clark, G. Initiation and Early Growth of Fatigue Cracks in an Aerospace Aluminum Alloy. Fatigue Fract. Eng. Mater. Struct. 2002, 25, 111–125. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Q.; Yang, Y.; Yang, F.; Dong, B.; Che, X.; Cao, H.; Zhang, T.; Zhang, Z. Anisotropic Low Cycle Behavior of the Extruded 7075 Al Alloy. Materials 2021, 14, 4506. [Google Scholar] [CrossRef] [PubMed]
- Turkmen, H.S.; Loge, R.E.; Dawson, P.R.; Miller, M.P. On the Mechanical Behaviour of AA 7075-T6 during Cyclic Loading. Int. J. Fatigue 2003, 25, 267–281. [Google Scholar] [CrossRef]
- Shiozaw, K.; Kobayash, H.; Terada, M.; Matsui, A. Effect of Anodized Coatings on Fatigue Strength in Aluminum Alloy. Trans. Eng. Sci. 2001, 33, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Rateick, R.G., Jr.; Griffith, R.J.; Hall, D.A.; Thompson, K.A. Relationship of Microstructure to Fatigue Strength Loss in Anodised Aluminum-Copper Alloys. Mater. Sci. Technol. 2005, 25, 1227–1235. [Google Scholar] [CrossRef]
- Sadeler, R. Effect of a commercial hard anodizing on the fatigue property of a 2014-T6 aluminium alloy. J. Mater. Sci. 2006, 41, 5803–5809. [Google Scholar] [CrossRef]
- Lonyuk, B.; Apachitei, I.; Duszczyk, J. The Effect of Oxide Coatings on Fatigue Properties of 7475-T6 Aluminium Alloy. Surf. Coat. Technol. 2007, 201, 8688–8694. [Google Scholar] [CrossRef]
- Cirik, E.; Genel, K. Effect of anodic oxidation on fatigue performance of 7075-T6 alloy. Surf. Coat. Technol. 2008, 202, 5190–5201. [Google Scholar] [CrossRef]
- Shahzad, M.; Chaussumier, R.; Chieragatti, R.; Mabru, C.; Rezai-Aria, F. Influence of Anodizing Process on Fatigue Life of Machined Aluminium Alloy. Procedia Eng. 2010, 2, 1015–1024. [Google Scholar] [CrossRef]
- Hockauf, K.; Winter, L.; Händel, M.; Halle, T. The Effect of Anodic Oxide Coating on the Fatigue Behaviour of AA6082 with an Ultrafine-Grained Microstructure. Mater. Werkst. 2011, 42, 624–631. [Google Scholar] [CrossRef]
- Camargo, A.; Voorwald, H. Influence of Anodization on the Fatigue Strength of 7050-T7451 Aluminium Alloy. Fatigue Fract. Eng. Mater. Struct. 2007, 30, 993–1007. [Google Scholar] [CrossRef]
- Inoue, A.K.; Tagawa, T.; Ishikawa, T. The Effect of Anodizing on the Fatigue Life of Aluminum Alloy 7050. J. Jpn. Inst. Met. 2012, 76, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Sundararajan, G.; Wasekar, N.P.; Ravi, N. The Influence of the Coating Technique on the High Cycle Fatigue Life of Alumina Coated Al 6061 Alloy. Trans. Indian Inst. Met. 2010, 63, 203–208. [Google Scholar] [CrossRef]
- Oguri, K. Fatigue Life Enhancement of Aluminum Alloy for Aircraft by Fine Particle Shot Peening (FPSP). J. Mater. Process. Technol. 2011, 21, 1395–1399. [Google Scholar] [CrossRef]
- Abdulstaar, M.; Mhaede, M.; Wollmann, M.; Wagner, L. Investigating the Effects of Bulk and Surface Severe Plastic Deformation on the Fatigue, Corrosion Behaviour and Corrosion Fatigue of AA5083. Surf. Coat. Technol. 2014, 254, 244–251. [Google Scholar] [CrossRef]
- Benedetti, M.; Fontanari, V.; Bandini, M.; Savio, E. High- and Very High-Cycle Plain Fatigue Resistance of Shot Peened High-Strength Aluminum Alloys: The Role of Surface Morphology. Int. J. Fatigue 2015, 70, 451–462. [Google Scholar] [CrossRef]
- Trsko, L.; Guagliano, M.; Bokuvka, O.; Novy, F.; Jambor, M.; Florkova, Z. Influence of Severe Shot Peening on the Surface State and Ultra-High-Cycle Fatigue Behavior of an AW 7075 Aluminum Alloy. J. Mater. Eng. Perform. 2017, 26, 2784–2797. [Google Scholar] [CrossRef]
- Gao, Y.K. Improvement of Fatigue Property in 7050-T7451 Aluminum Alloy by Laser Peening and Shot Peening. Mater. Sci. Eng. A 2011, 528, 3823–3828. [Google Scholar] [CrossRef]
- Luong, H.; Hill, M.R. The Effects of Laser Peening and Shot Peening on High Cycle Fatigue in 7050-T7451 Aluminum Alloy. Mater. Sci. Eng. A 2010, 527, 699–707. [Google Scholar] [CrossRef]
- Pandey, V.; Chattopadhyay, K.; Srinivas, N.C.S.; Singh, V. Role of Ultrasonic Shot Peening on Low Cycle Fatigue Behavior of 7075 Aluminium Alloy. Int. J. Fatigue 2017, 103, 426–435. [Google Scholar] [CrossRef]
- Singh, V.; Pandey, V.; Kumar, S.; Srinivas, N.C.S. Effect of Ultrasonic Shot Peening on Surface Microstructure and Fatigue Behavior of Structural Alloys. Trans. Indian Inst. Met. 2015, 69, 295–301. [Google Scholar] [CrossRef]
- Muruganadhan, R.; Mugilvalavan, M.; Thirumavalavan, K.; Yuvaraj, N. Investigation of Water Jet Peening Process Parameters on AL6061-T6. Surf. Eng. 2018, 34, 330–340. [Google Scholar] [CrossRef]
- Mahmoudi, A.H.; Jamali, A.M.; Salahi, F.; Khajeian, A. Effects of Water Jet Peening on Residual Stresses, Roughness, and Fatigue. Surf. Eng. 2021, 37, 972–981. [Google Scholar] [CrossRef]
- Hadzima, B.; Novy, F.; Trško, L.; Pastorek, S. Shot Peening as a Pre-Treatment to Anodic Oxidation Coating Process of AW 6082 Aluminum for Fatigue Life Improvement. Int. J. Adv. Manuf. Technol. 2017, 93, 3315–3323. [Google Scholar] [CrossRef]
- Mhaede, M. Influence of Surface Treatments on Surface Layer Properties, Fatigue and Corrosion Fatigue Performance of AA7075 T73. Mater. Des. 2012, 41, 61–66. [Google Scholar] [CrossRef]
- Chung, Y.-H.; Chen, T.-C.; Lee, H.-B.; Tsay, L.-W. Effect of Micro-Shot Peening on the Fatigue Performance of AISI 304 Stainless Steel. Metals 2021, 11, 1408. [Google Scholar] [CrossRef]
- Sawada, T.; Yanagitani, A. Properties of Cold Work Tool Steel Shot Peened by 1200 HV-Class Fe-Cr-B Gas Atomized Powder as Shot Peening Media. Mater. Trans. 2010, 51, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Liu, J.P.; Gao, Y.R.; Liu, Z.H.; Mai, Q.Q. Effect of heat treatment process on the micro machinability of 7075 aluminum alloy. Vacuum 2023, 207, 111574. [Google Scholar] [CrossRef]
- Su, C.-H.; Chen, T.-C.; Tsay, L.-W. Improved Fatigue Strength of Cr-electroplated 7075 Al by Micro-Shot Peening. Int. J. Fatigue 2023, 167, 107354. [Google Scholar] [CrossRef]
- Li, X.-K.; Zhu, S.-P.; Liao, D.; Correia, J.A.F.O.; Berto, F.; Wang, Q.Y. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory. Int. J. Fatigue 2022, 159, 106788. [Google Scholar] [CrossRef]
- He, J.C.; Zhu, S.-P.; Luo, C.Q.; Niu, X.P.; Wang, Q.Y. Size effect in fatigue modelling of defective materials: Application of the calibrated weakest-link theory. Int. J. Fatigue 2022, 165, 107213. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Kawagoishi, N.; Chen, Q. Effect of Pitting Corrosion on Very High Cycle Fatigue Behavior. Scr. Mater. 2003, 49, 711–716. [Google Scholar] [CrossRef]
- Shahzad, M.; Chaussumier, M.; Chieragatti, R.; Mabru, C.; Rezai-Aria, F. Surface Characterization and Influence of Anodizing Process on Fatigue Life of Al 7050 Alloy. Mater. Des. 2011, 32, 3328–3335. [Google Scholar] [CrossRef] [Green Version]
Specimen | Sa 1 | Sp 2 | Sv 3 |
---|---|---|---|
Ground sample | 0.217 | 1.494 | −1.211 |
LP sample | 0.385 | 1.396 | −1.506 |
HP sample | 1.303 | 6.400 | −7.519 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, C.-H.; Chen, T.-C.; Ding, Y.-S.; Lu, G.-X.; Tsay, L.-W. Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy. Materials 2023, 16, 1160. https://doi.org/10.3390/ma16031160
Su C-H, Chen T-C, Ding Y-S, Lu G-X, Tsay L-W. Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy. Materials. 2023; 16(3):1160. https://doi.org/10.3390/ma16031160
Chicago/Turabian StyleSu, Chih-Hang, Tai-Cheng Chen, Yi-Shiun Ding, Guan-Xun Lu, and Leu-Wen Tsay. 2023. "Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy" Materials 16, no. 3: 1160. https://doi.org/10.3390/ma16031160
APA StyleSu, C. -H., Chen, T. -C., Ding, Y. -S., Lu, G. -X., & Tsay, L. -W. (2023). Effects of Micro-Shot Peening on the Fatigue Strength of Anodized 7075-T6 Alloy. Materials, 16(3), 1160. https://doi.org/10.3390/ma16031160