Ab Initio Simulation of Structure and Properties in Ni-Based Superalloys: Haynes282 and Inconel740
Abstract
:1. Introduction
2. Model Construction
2.1. Supercell Construction
2.2. Computational Methods
3. Results
3.1. Atomic Structure
3.2. Electronic Structure and Interatomic Bonding
3.3. Mechanical Properties
4. Discussion on the Nature of Metallic Bonding and Mechanical Strength
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reed, R.; Rae, C. Physical Metallurgy of the Nickel-Based Superalloys. In Physical Metallurgy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 2215–2290. [Google Scholar] [CrossRef]
- Chu, S. Critical Materials Strategy; DIANE Publishing: New, York, NY, USA, 2011. [Google Scholar]
- Mckittrick, M. US Department of Energy Critical Materials Strategy; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2011. [Google Scholar]
- Wadsworth, J.; Crabtree, G.W.; Hemley, R.J.; Falcone, R.; Robertson, I.; Stringer, J.; Tortorelli, P.; Gray, G.T.; Nicol, M.; Lehr, J.; et al. Basic Research Needs for Materials under Extreme Environments; USDOE Office of Science: Washington, DC, USA, 2008. [Google Scholar]
- Ganta, B.R.; Soare, M.; Shen, C. Creep Life Assessment of High Temperature Advanced Ultrasupercritical (AUSC) Conceptual Boiler Thick-Walled Pressure Components Using Continuum Damage Mechanics Approach. In Pressure Vessels and Piping Conference; American Society of Mechanical Engineers: New York, NY, USA, 2016. [Google Scholar]
- Shen, C.; Gupta, V.; Huang, S.; Soare, M.; Zhao, P.; Wang, Y. Modeling Long-Term Creep Performance for Welded Nickel-Base Superalloy Structures for Power Generation Systems; GE Global Research: Niskayuna, NY, USA, 2017. [Google Scholar]
- Saha, D. Materials for Advanced Ultrasupercritical Steam Turbines Task 3: Materials for Non-Welded Rotors, Buckets, and BoltingMaterials for Advanced Ultrasupercritical Steam Turbines; Energy Industries of Ohio Incorporated: Columbus, OH, USA, 2015. [Google Scholar]
- Balos, D. Application of Data Mining for Assessment of Material Properties: Creep Behavior of High-Temperature Steels. Doctoral Dissertation, Otto-von-Guericke-Universität, Magdeburg, Germany, 2009. [Google Scholar]
- Frolova, O.; Roos, E.; Maile, K.; Müller, W. Representation of the heat specific creep rupture behaviour of 9% Cr steels using neural networks. Trans. Mach. Learn. Data Min. 2011, 4, 1–16. [Google Scholar]
- Tinoco, J.; Alberto, A.; da Venda, P.; Correia, A.G.; Lemos, L. A Data-driven Approach for qu Prediction of Laboratory Soil-cement Mixtures. Procedia Eng. 2016, 143, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.-D.; Wang, T.; Zheng, D.-L.; Zhou, Y.-C. The effect of deposition temperature on the intermixing and microstructure of Fe/Ni thin film. Chin. Phys. B 2010, 19, 126801. [Google Scholar] [CrossRef]
- Wen, C.; Xu, T.; Guan, K. Correlation Factor Study of Small Punch Creep Test and Its Life Prediction. Materials 2016, 9, 796. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Sakidja, R.; Ching, W.-Y.; Zhou, C. Crystal plasticity modeling of void growth on grain boundaries in Ni-based superalloys. JOM 2019, 71, 3859–3868. [Google Scholar] [CrossRef]
- Tortorelli, P.F.; Unocic, K.A.; Wang, H.; Santella, M.L.; Shingledecker, J.P. Alloys for advanced Ultrasupercritical (A-USC) steam boilers. EPRI. Crosscutting Res. Mater. Program DOE Foss. Energy 2016, 1–38. [Google Scholar]
- Tortorelli, P.F.; Unocic, K.A.; Wang, H.; Shingledecker, J.P. Ni-based alloys for advanced ultrasupercritical steam boilers. Foss. Energy Crosscutting Res. Program Rev. US DOE. 2014, 2014, 1–34. [Google Scholar]
- Cantor, B.; Chang, I.T.H.; Knight, P.; Vincent, A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 375–377, 213–218. [Google Scholar] [CrossRef]
- Yeh, J.-W.; Chen, S.K.; Lin, S.-J.; Gan, J.-Y.; Chin, T.-S.; Shun, T.-T.; Tsau, C.-H.; Chang, S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Yeh, J.-W. Alloy Design Strategies and Future Trends in High-Entropy Alloys. JOM 2013, 65, 1759–1771. [Google Scholar] [CrossRef]
- Ching, W.-Y. Ceramic Genomics: Total Bond Order Density. Encyclopedia of Materials: Technical Ceramics and Glasses; Pomeroy, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Ching, W.-Y.; Rulis, P. Electronic Structure Methods for Complex Materials: The Orthogonalized Linear Combination of Atomic Orbitals; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Nielsen, O.H.; Martin, R.M. First-Principles Calculation of Stress. Phys. Rev. Lett. 1983, 50, 697–700. [Google Scholar] [CrossRef]
- Yao, H.; Ouyang, L.; Ching, W.-Y. Ab Initio Calculation of Elastic Constants of Ceramic Crystals. J. Am. Ceram. Soc. 2007, 90, 3194–3204. [Google Scholar] [CrossRef]
- Ching, W.-Y.; San, S.; Brechtl, J.; Sakidja, R.; Zhang, M.; Liaw, P.K. Fundamental electronic structure and multiatomic bonding in 13 biocompatible high-entropy alloys. Npj Comput. Mater. 2020, 6, 45. [Google Scholar] [CrossRef]
- San, S.; Ching, W.-Y. Subtle Variations of the Electronic Structure and Mechanical Properties of High Entropy Alloys With 50% Carbon Composites. Front. Mater. 2020, 7, 575262. [Google Scholar] [CrossRef]
- San, S.; Tong, Y.; Bei, H.; Kombaiah, B.; Zhang, Y.; Ching, W.-Y. First-principles calculation of lattice distortions in four single phase high entropy alloys with experimental validation. Mater. Des. 2021, 209, 110071. [Google Scholar] [CrossRef]
- Mulliken, R.S. Electronic population analysis on LCAO-MO molecular wave functions. IV. bonding and antibonding in LCAO and Valence-bond theories. J. Chem. Phys. 1955, 23, 2343–2346. [Google Scholar] [CrossRef]
- Ching, W.-Y. First Principles Calculations. In Springer Handbook of Glass; Musgraves, J.D., Hu, J., Calvez, L., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Voigt, W. Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik); Teubner, B.G., Edwards, J.W., Eds.; B.G. Teubner: Leipzig, Germany, 1928. [Google Scholar]
- Reuss, A. Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. ZAMM-J. Appl. Math. Mech. Z. Für Angew. Math. Und Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Zhou, Y.; Dai, F.; Xiang, H.; Liu, B.; Feng, Z. Shear anisotropy: Tuning high temperature metal hexaborides from soft to extremely hard. J. Mater. Sci. Technol. 2017, 33, 1371–1377. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 2012, 33, 93–106. [Google Scholar] [CrossRef]
- Owen, L.R.; Jones, N.G. Lattice distortions in high-entropy alloys. J. Mater. Res. 2018, 33, 2954–2969. [Google Scholar] [CrossRef]
- Haynes Internationals. Available online: https://www.haynesintl.com/alloys/alloy-portfolio_/High-temperature-Alloys/haynes-r-41-alloy/elastic-modulus (accessed on 1 August 2022).
- ASM Handbook. Volume 3, Alloy Phase Diagrams. Prepared under the Direction of the ASM International Handbook Committees. Materials Park, OH ASM International, c1992. Available online: https://search.library.wisc.edu/catalog/9984110233602122 (accessed on 1 August 2022).
Element | Hay282 | Inc740 | ||
---|---|---|---|---|
Atom% | No. | Atom% | No. | |
Ni | 51.37 | 444 | 43.13 | 373 |
Cr | 23.42 | 202 | 28.46 | 246 |
Co | 9.11 | 79 | 17.72 | 153 |
Al | 6.53 | 56 | 3.81 | 33 |
Ti | 2.90 | 25 | 2.41 | 21 |
Nb | -- | -- | 0.71 | 6 |
Mo | 2.92 | 25 | 0.17 | 1 |
Fe | 1.35 | 12 | 0.69 | 6 |
Mn | 0.31 | 3 | 0.31 | 3 |
Si | 0.61 | 5 | 1.95 | 17 |
C | 1.33 | 12 | 0.64 | 5 |
B | 0.15 | 1 | -- | -- |
Total | 864 | 864 |
Model | a (Å) | b (Å) | c (Å) | Vol(Å3) | 1NN(Å) | 2NN(Å) | |||
---|---|---|---|---|---|---|---|---|---|
Hay282 | 21.35 | 21.54 | 21.42 | 90.05 | 90.04 | 90.05 | 9850.61 | 2.53 | 3.57 |
Inc740 | 21.36 | 21.23 | 21.36 | 89.92 | 89.98 | 90.08 | 9686.95 | 2.51 | 3.55 |
Model | Ni | Cr | Co | Al | Ti | Nb | Mo | Fe | Mn | Si | C | B | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Hay282 | 524.78 | 307.41 | 143.82 | 8.02 | 17.91 | -- | 22.4 | 22.68 | 4.86 | 0.87 | 2.02 | 0.18 | 1054.93 |
Inc740 | 432.12 | 368.22 | 268.62 | 4.39 | 14.53 | 4.11 | 0.76 | 10.3 | 4.27 | 2.58 | 0.97 | -- | 1110.87 |
Inconel740 | Haynes282 | ||||||
---|---|---|---|---|---|---|---|
Element | Atoms | Q* | PC | Element | Atoms | Q* | PC |
Ni | 373 | 9.972 | 0.028 | Ni | 444 | 9.981 | 0.019 |
Cr | 246 | 6.207 | −0.207 | Cr | 202 | 6.213 | −0.213 |
Co | 153 | 8.885 | 0.115 | Co | 79 | 8.890 | 0.110 |
Al | 33 | 2.779 | 0.221 | Al | 56 | 2.776 | 0.224 |
Ti | 21 | 3.479 | 0.521 | Ti | 25 | 3.471 | 0.529 |
Nb | 6 | 10.312 | 0.688 | Mo | 25 | 5.880 | 0.120 |
Mo | 1 | 5.926 | 0.074 | Fe | 12 | 7.860 | 0.140 |
Fe | 6 | 7.866 | 0.134 | Mn | 3 | 6.733 | 0.267 |
Mn | 3 | 6.675 | 0.325 | Si | 5 | 3.995 | 0.005 |
Si | 17 | 3.985 | 0.015 | C | 12 | 4.498 | −0.498 |
C | 5 | 4.514 | −0.514 | B | 1 | 3.577 | −0.577 |
Model | C11 | C12 | C44 | K | G | E | ƞ | G/K | Hv | TBOD |
---|---|---|---|---|---|---|---|---|---|---|
Hay282 | 244.61 | 174.89 | 106.36 | 194.55 | 68.04 | 182.82 | 0.343 | 0.350 | 5.530 | 0.04277 |
Inc740 | 262.82 | 182.85 | 116.95 | 206.25 | 76.06 | 203.21 | 0.336 | 0.369 | 6.355 | 0.04263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ching, W.-Y.; San, S.; Zhou, C.; Sakidja, R. Ab Initio Simulation of Structure and Properties in Ni-Based Superalloys: Haynes282 and Inconel740. Materials 2023, 16, 887. https://doi.org/10.3390/ma16020887
Ching W-Y, San S, Zhou C, Sakidja R. Ab Initio Simulation of Structure and Properties in Ni-Based Superalloys: Haynes282 and Inconel740. Materials. 2023; 16(2):887. https://doi.org/10.3390/ma16020887
Chicago/Turabian StyleChing, Wai-Yim, Saro San, Caizhi Zhou, and Ridwan Sakidja. 2023. "Ab Initio Simulation of Structure and Properties in Ni-Based Superalloys: Haynes282 and Inconel740" Materials 16, no. 2: 887. https://doi.org/10.3390/ma16020887
APA StyleChing, W. -Y., San, S., Zhou, C., & Sakidja, R. (2023). Ab Initio Simulation of Structure and Properties in Ni-Based Superalloys: Haynes282 and Inconel740. Materials, 16(2), 887. https://doi.org/10.3390/ma16020887