MOF-Derived Spindle-Shaped Z-Scheme ZnO/ZnFe2O4 Heterojunction: A Magnetic Recovery Catalyst for Efficient Photothermal Degradation of Tetracycline Hydrochloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of MIL-88A(Fe)
2.2. Preparation of ZnO/ZnFe2O4 Heterojunction
2.3. Photocatalytic and Photothermal Catalysis Activity Measurements
3. Results and Discussion
3.1. Morphology and Structure
3.2. Photocatalytic Activity and Reusability
3.3. Effect of Temperature on Catalytic Effect
3.4. Analysis of the Photocatalytic Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Barhoumi, N.; Oturan, N.; Ammar, S.; Gadri, A.; Oturan, M.A.; Brillas, E. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ. Chem. Lett. 2017, 15, 689–693. [Google Scholar] [CrossRef]
- Kim, I.; Yamashita, N.; Tanaka, H. Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan. J. Hazard. Mater. 2009, 166, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Yang, Y.; Kang, J.; Fan, M.H.; Qu, J.H. Removal of tetracycline from water by Fe-Mn binary oxide. J. Environ. Sci. 2012, 24, 242–247. [Google Scholar] [CrossRef]
- López-Peñalver, J.J.; Sánchez-Polo, M.; Gómez-Pacheco, C.V.; Rivera-Utrilla, J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. J. Chem. Technol. Biotechnol. 2010, 85, 1325–1333. [Google Scholar] [CrossRef]
- Akhil, D.; Lakshmi, D.; Kumar, P.S.; Vo, D.V.N.; Kartik, A. Occurrence and removal of antibiotics from industrial wastewater. Environ. Chem. Lett. 2021, 19, 1477–1507. [Google Scholar] [CrossRef]
- Liu, D.J.; Li, B.; Wu, J.; Liu, Y.X. Photocatalytic oxidation removal of elemental mercury from flue gas. A review. Environ. Chem. Lett. 2020, 18, 417–431. [Google Scholar] [CrossRef]
- Saravanan, A.; Kumar, P.S.; Vo, D.V.N.; Yaashikaa, P.R.; Karishma, S.; Jeevanantham, S.; Gayathri, B.; Bharathi, V.D. Photocatalysis for removal of environmental pollutants and fuel production: A review. Environ. Chem. Lett. 2021, 19, 441–463. [Google Scholar] [CrossRef]
- Peng, X.M.; Luo, W.D.; Wu, J.Q.; Hu, F.P.; Hu, Y.Y.; Xu, L.; Xu, G.P.; Jian, Y.; Dai, H.L. Carbon quantum dots decorated heteroatom co-doped core-shell Fe-0@POCN for degradation of tetracycline via multiply synergistic mechanisms. Chemosphere 2021, 268, 128806. [Google Scholar] [CrossRef]
- Li, X.B.; Xiong, J.; Gao, X.M.; Ma, J.; Chen, Z.; Kang, B.B.; Liu, J.Y.; Li, H.; Feng, Z.J.; Huang, J.T. Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J. Hazard. Mater. 2020, 387, 121690. [Google Scholar] [CrossRef]
- Louangsouphom, B.; Wang, X.; Song, J.; Wang, X. Low-temperature preparation of a N-TiO2/macroporous resin photocatalyst to degrade organic pollutants. Environ. Chem. Lett. 2019, 17, 1061–1066. [Google Scholar] [CrossRef]
- Low, J.X.; Dai, B.Z.; Tong, T.; Jiang, C.J.; Yu, J.G. In Situ Irradiated X-ray Photoelectron Spectroscopy Investigation on a Direct Z-Scheme TiO2/CdS Composite Film Photocatalyst. Adv. Mater. 2019, 31, 1802981. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.Y.; Hu, Y.H. Thermo-photo catalysis: A whole greater than the sum of its parts. Chem. Soc. Rev. 2022, 51, 3609–3647. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Huang, L.; Mahmud, S.; Yang, F.; Liu, H. Bio-synthesized palladium nanoparticles using alginate for catalytic degradation of azo-dyes. Chin. J. Chem. Eng. 2020, 28, 1334–1343. [Google Scholar] [CrossRef]
- Jia, X.M.; Han, Q.F.; Liu, H.N.; Li, S.Z.; Bi, H.P. A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1-xBrx heterojunction with enhanced visible-light photocatalytic activity. Chem. Eng. J. 2020, 399, 125701. [Google Scholar] [CrossRef]
- He, X.H.; Kai, T.H.; Ding, P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review. Environ. Chem. Lett. 2021, 19, 4563–4601. [Google Scholar] [CrossRef]
- Zhang, S.; Du, S.; Wang, Y.; Han, Z.; Li, X.; Li, G.; Hu, Q.; Xu, H.; He, C.; Fang, P. Synergy of yolk-shelled structure and tunable oxygen defect over CdS/CdCO3-CoS2: Wide band-gap semiconductors assist in efficient visible-light-driven H2 production and CO2 reduction. Chem. Eng. J. 2023, 454, 140113. [Google Scholar] [CrossRef]
- Zhang, S.; Du, S.; Wang, Y.; Han, Z.; Ma, W.; Xu, H.; Lei, Y.; Fang, P. Metal-organic coordination polymers-derived ultra-small MoC nanodot/N-doped carbon combined with CdS: A hollow Z-type catalyst for stable and efficient H2 production/CO2 reduction. Appl. Surf. Sci. 2023, 608, 155176. [Google Scholar] [CrossRef]
- Zhang, S.; Du, S.; Han, Z.; Wang, Y.; Jiang, T.; Wu, S.; Chen, C.; Han, Q.; Suo, S.; Xu, H.; et al. Ohmic-functionalized type I heterojunction: Improved alkaline water splitting and photocatalytic conversion from CO2 to C2H2. Chem. Eng. J. 2023, 471, 144438. [Google Scholar] [CrossRef]
- Xiong, Y.; Wan, H.; Islam, M.; Wang, W.; Xie, L.; Lü, S.; Kabir, S.M.F.; Liu, H.; Mahmud, S. Hyaluronate macromolecules assist bioreduction (AuIII to Au0) and stabilization of catalytically active gold nanoparticles for azo contaminated wastewater treatment. Environ. Technol. Innov. 2021, 24, 102053. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, F.; Yang, M.; Fang, P. POSS modified NixOy-decorated TiO2 nanosheets: Nanocomposites for adsorption and photocatalysis. Appl. Surf. Sci. 2021, 566, 150604. [Google Scholar] [CrossRef]
- Zeng, W.; Gui, A.; He, X.; Tang, M.; Zhang, X.; He, X.; Hu, Y.; Di, K.; Dong, Y.; Xiong, Y.; et al. Van der Waals Black Phosphorus/Bi10O6S9 Heterojunction Harvesting Ambient Electric Field Energy for Enhanced Photoelectrochemical Sense. J. Phys. Chem. C 2023, 127, 1229–1243. [Google Scholar] [CrossRef]
- Ma, W.; Du, M.; Li, H.; Wang, Y.; Han, Z.; Chen, C.; Zhang, S.; Han, Q.; Li, Y.; Fang, J.; et al. The binary piezoelectric synergistic effect of KNbO3/MoS2 heterojunction for improving photocatalytic performance. J. Alloys Compd. 2023, 960, 170669. [Google Scholar] [CrossRef]
- Shi, W.; Hao, C.; Shi, Y.; Guo, F.; Tang, Y. Effect of different carbon dots positions on the transfer of photo-induced charges in type I heterojunction for significantly enhanced photocatalytic activity. Sep. Purif. Technol. 2023, 304, 122337. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, X.; Li, J.; Han, D.; Ma, Y.; Fan, Y.; Han, D.; Niu, L. Type II Heterojunction Formed between {010} or {012} Facets Dominated Bismuth Vanadium Oxide and Carbon Nitride to Enhance the Photocatalytic Degradation of Tetracycline. Int. J. Environ. Res. Public Health 2022, 19, 14770. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Meng, C.; Zhang, X.; Wang, S.; Duan, K.; Li, X.; Hu, Y.; Cheng, H. Direct Z-scheme In2O3/AgI heterojunction with oxygen vacancies for efficient molecular oxygen activation and enhanced photocatalytic degradation of tetracycline. Chem. Eng. J. 2023, 466, 143319. [Google Scholar] [CrossRef]
- Guo, F.; Shi, W.; Li, M.; Shi, Y.; Wen, H. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep. Purif. Technol. 2019, 210, 608–615. [Google Scholar] [CrossRef]
- Li, Y.X.; Wen, M.M.; Wang, Y.; Tian, G.; Wang, C.Y.; Zhao, J.C. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO2 Reduction on Bi2O3-x. Angew. Chem. Int. Edit. 2021, 60, 910–916. [Google Scholar] [CrossRef]
- Sarina, S.; Zhu, H.Y.; Xiao, Q.; Jaatinen, E.; Jia, J.F.; Huang, Y.M.; Zheng, Z.F.; Wu, H.S. Viable Photocatalysts under Solar-Spectrum Irradiation: Nonplasmonic Metal Nanoparticles. Angew. Chem. Int. Edit. 2014, 53, 2935–2940. [Google Scholar] [CrossRef]
- Wang, L.C.; Wang, Y.; Cheng, Y.; Liu, Z.F.; Guo, Q.S.; Ha, M.N.; Zhao, Z. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance. J. Mater. Chem. A 2016, 4, 5314–5322. [Google Scholar] [CrossRef]
- Chen, X.B.; Liu, L.; Yu, P.Y.; Mao, S.S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746–750. [Google Scholar] [CrossRef]
- Ma, Z.L.; Liu, W.; Yang, W.; Li, W.C.; Han, B. Temperature effects on redox potentials and implications to semiconductor photocatalysis. Fuel 2021, 286, 119490. [Google Scholar] [CrossRef]
- Han, B.; Wei, W.; Chang, L.; Cheng, P.F.; Hu, Y.H. Efficient Visible Light Photocatalytic CO2 Reforming of CH4. ACS Catal. 2016, 6, 494–497. [Google Scholar] [CrossRef]
- Rej, S.; Mascaretti, L.; Santiago, E.Y.; Tomanec, O.; Kment, Š.; Wang, Z.; Zbořil, R.; Fornasiero, P.; Govorov, A.O.; Naldoni, A. Determining Plasmonic Hot Electrons and Photothermal Effects during H2 Evolution with TiN–Pt Nanohybrids. ACS Catal. 2020, 10, 5261–5271. [Google Scholar] [CrossRef]
- Li, J.W.; Yang, X.Q.; Ma, C.R.; Lei, Y.; Cheng, Z.Y.; Rui, Z.B. Selectively recombining the photoinduced charges in bandgap-broken Ag3PO4/GdCrO3 with a plasmonic Ag bridge for efficient photothermocatalytic VOCs degradation and CO2 reduction. Appl. Catal. B-Environ. 2021, 291, 120053. [Google Scholar] [CrossRef]
- Kong, J.J.; Jiang, C.L.; Rui, Z.B.; Liu, S.H.; Xian, F.L.; Ji, W.K.; Ji, H.B. Photothermocatalytic synergistic oxidation: An effective way to overcome the negative water effect on supported noble metal catalysts for VOCs oxidation. Chem. Eng. J. 2020, 397, 125485. [Google Scholar] [CrossRef]
- Wang, F.; Li, C.H.; Chen, H.J.; Jiang, R.B.; Sun, L.D.; Li, Q.; Wang, J.F.; Yu, J.C.; Yan, C.H. Plasmonic Harvesting of Light Energy for Suzuki Coupling Reactions. J. Am. Chem. Soc. 2013, 135, 5588–5601. [Google Scholar] [CrossRef] [PubMed]
- Lou, Z.Z.; Gu, Q.; Liao, Y.S.; Yu, S.J.; Xue, C. Promoting Pd-catalyzed Suzuki coupling reactions through near-infrared plasmon excitation of WO3-x nanowires. Appl. Catal. B-Environ. 2016, 184, 258–263. [Google Scholar] [CrossRef]
- Jacinto, M.J.; Ferreira, L.F.; Silva, V.C. Magnetic materials for photocatalytic applications—A review. J. Sol-Gel Sci. Technol. 2020, 96, 1–14. [Google Scholar] [CrossRef]
- Terra, J.C.S.; Desgranges, A.; Monnereau, C.; Sanchez, E.H.; De Toro, J.A.; Amara, Z.; Moores, A. Photocatalysis Meets Magnetism: Designing Magnetically Recoverable Supports for Visible-Light Photocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 24895–24904. [Google Scholar] [CrossRef]
- Luo, J.; Wu, Y.; Chen, X.; He, T.; Zeng, Y.; Wang, G.; Wang, Y.; Zhao, Y.; Chen, Z. Synergistic adsorption-photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal. J. Alloys Compd. 2022, 910, 164954. [Google Scholar] [CrossRef]
- Galloni, M.G.; Ferrara, E.; Falletta, E.; Bianchi, C.L. Olive Mill Wastewater Remediation: From Conventional Approaches to Photocatalytic Processes by Easily Recoverable Materials. Catalysts 2022, 12, 923. [Google Scholar] [CrossRef]
- Zhang, X.H.; Lin, B.Y.; Li, X.Y.; Wang, X.; Huang, K.Z.; Chen, Z.H. MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal. Chem. Eng. J. 2022, 430, 132728. [Google Scholar] [CrossRef]
- Zhang, K.; Cao, H.Y.; Dar, A.; Li, D.Q.; Zhou, L.A.; Wang, C.Y. Construction of oxygen defective ZnO/ZnFe2O4 yolk-shell composite with photothermal effect for tetracycline degradation: Performance and mechanism insight. Chin. Chem. Lett. 2023, 34, 107308. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Liang, Q.W.; Li, Y.; Luo, H.J. Surface oxygen vacancies and carbon dopant co-decorated magnetic ZnFe2O4 as photo-Fenton catalyst towards efficient degradation of tetracycline hydrochloride. Chemosphere 2022, 302, 134832. [Google Scholar] [CrossRef] [PubMed]
- Nasseh, N.; Taghavi, L.; Barikbin, B.; Nasseri, M.A. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. J. Clean Prod. 2018, 179, 42–54. [Google Scholar] [CrossRef]
- Cai, C.; Zhang, Z.Y.; Liu, J.; Shan, N.; Zhang, H.; Dionysiou, D.D. Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange II in water. Appl. Catal. B-Environ. 2016, 182, 456–468. [Google Scholar] [CrossRef]
- Li, J.Q.; Liu, Z.X.; Zhu, Z.F. Magnetically separable ternary hybrid of ZnFe2O4-Fe2O3-Bi2WO6 hollow nanospheres with enhanced visible photocatalytic property. Appl. Surf. Sci. 2014, 320, 146–153. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.J.; Han, W.; Liang, S.M.; Jiao, Y.Z.; Tian, G.H. ZIF-8 derived hierarchical ZnO@ZnFe2O4 hollow polyhedrons anchored with CdS for efficient photocatalytic CO2 reduction. Sep. Purif. Technol. 2023, 309, 122970. [Google Scholar] [CrossRef]
- Song, H.; Zhu, L.P.; Li, Y.G.; Lou, Z.R.; Xiao, M.; Ye, Z.Z. Preparation of ZnFe2O4 nanostructures and highly efficient visible-light-driven hydrogen generation with the assistance of nanoheterostructures. J. Mater. Chem. A 2015, 3, 8353–8360. [Google Scholar] [CrossRef]
- Zhang, C.H.; Han, X.Y.; Wang, F.; Wang, L.J.; Liang, J.S. A Facile Fabrication of ZnFe2O4/Sepiolite Composite with Excellent Photocatalytic Performance on the Removal of Tetracycline Hydrochloride. Front. Chem. 2021, 9, 736369. [Google Scholar] [CrossRef] [PubMed]
- Fei, W.H.; Song, Y.; Li, N.J.; Chen, D.Y.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Hollow In2O3@ZnFe2O4 heterojunctions for highly efficient photocatalytic degradation of tetracycline under visible light. Environ. Sci. Nano 2019, 6, 3123–3132. [Google Scholar] [CrossRef]
- Yang, B.Y.; Zhang, S.K.; Gao, Y.; Huang, L.Q.; Yang, C.; Hou, Y.D.; Zhang, J.S. Unique functionalities of carbon shells coating on ZnFe2O4 for enhanced photocatalytic hydroxylation of benzene to phenol. Appl. Catal. B-Environ. 2022, 304, 120999. [Google Scholar] [CrossRef]
- Yang, Z.F.; Xia, X.N.; Shao, L.H.; Wang, L.L.; Liu, Y.T. Efficient photocatalytic degradation of tetracycline under visible light by Z-scheme Ag3PO4/mixed-valence MIL-88A(Fe) heterojunctions: Mechanism insight, degradation pathways and DFT calculation. Chem. Eng. J. 2021, 410, 128454. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Fang, S.Y.; Zhang, W.; Sun, K.; Hu, Y.H. Highly efficient thermo-photocatalytic degradation of tetracycline catalyzed by tungsten disulfide under visible light. Environ. Chem. Lett. 2023, 21, 1287–1295. [Google Scholar] [CrossRef]
- Zhu, D.H.; Cai, L.; Sun, Z.Y.; Zhang, A.; Heroux, P.; Kim, H.; Yu, W.; Liu, Y.A. Efficient degradation of tetracycline by RGO@black titanium dioxide nanofluid via enhanced catalysis and photothermal conversion. Sci. Total Environ. 2021, 787, 147536. [Google Scholar] [CrossRef]
- Cai, T.; Zeng, W.G.; Liu, Y.T.; Wang, L.L.; Dong, W.Y.; Chen, H.; Xia, X.N. A promising inorganic-organic Z-scheme photocatalyst Ag3PO4/PDI supermolecule with enhanced photoactivity and photostability for environmental remediation. Appl. Catal. B-Environ. 2020, 263, 118327. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, S.; Liu, B.K.; Wang, D.J.; Xie, T.F. Highly Efficient CdS/WO3 Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution under Visible Light. ACS Catal. 2014, 4, 3724–3729. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Jaroniec, M. Direct Z-scheme photocatalysts: Principles, synthesis, and applications. Mater. Today 2018, 21, 1042–1063. [Google Scholar] [CrossRef]
- Li, C.; Yu, S.; Che, H.; Zhang, X.; Han, J.; Mao, Y.; Wang, Y.; Liu, C.; Dong, H. Fabrication of Z-Scheme Heterojunction by Anchoring Mesoporous γ-Fe2O3 Nanospheres on g-C3N4 for Degrading Tetracycline Hydrochloride in Water. ACS Sustain. Chem. Eng. 2018, 6, 16437–16447. [Google Scholar] [CrossRef]
- Zhang, K.; Li, D.; Tian, Q.; Cao, H.; Orudzhev, F.; Zvereva, I.A.; Xu, J.; Wang, C. Recyclable 0D/2D ZnFe2O4/Bi5FeTi3O15 S-scheme heterojunction with bismuth decoration for enhanced visible-light-driven tetracycline photodegradation. Ceram. Int. 2021, 47, 17109–17119. [Google Scholar] [CrossRef]
- Cao, H.L.; Cai, F.Y.; Yu, K.; Zhang, Y.Q.; Lu, J.; Cao, R. Photocatalytic Degradation of Tetracycline Antibiotics over CdS/Nitrogen-Doped-Carbon Composites Derived from in Situ Carbonization of Metal-Organic Frameworks. ACS Sustain. Chem. Eng. 2019, 7, 10847. [Google Scholar] [CrossRef]
- Shi, W.L.; Guo, F.; Yuan, S.L. In situ synthesis of Z-scheme Ag3PO4/CuBi2O4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl. Catal. B-Environ. 2017, 209, 720–728. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Wang, Y.L.; Zhao, J.W.; Wang, D.B.; Li, X.M.; Guo, Z.; Wang, H.; Deng, Y.C.; Niu, C.G.; et al. Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B-Environ. 2017, 205, 133–147. [Google Scholar] [CrossRef]
- Akshhayya, C.; Okla, M.K.; Al-Qahtani, W.H.; Rajeshwari, M.R.; Mohebaldin, A.; Alwasel, Y.A.; Soufan, W.; Abdel-Maksoud, M.A.; AbdElgawad, H.; Raju, L.L. Novel ZnFe2O4 decorated on ZnO nanorod: Synergistic photocatalytic degradation of tetracycline, kinetics, degradation pathway and antifungal activity. J. Environ. Chem. Eng. 2022, 10, 107673. [Google Scholar] [CrossRef]
- Luo, J.H.; Wu, Y.H.; Jiang, M.Z.; Zhang, A.H.; Chen, X.Y.; Zeng, Y.L.; Wang, Y.H.; Zhao, Y.L.; Wang, G.J. Novel ZnFe2O4/BC/ZnO photocatalyst for high-efficiency degradation of tetracycline under visible light irradiation. Chemosphere 2023, 311, 137041. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suo, S.; Ma, W.; Zhang, S.; Han, Z.; Wang, Y.; Li, Y.; Xiong, Y.; Liu, Y.; He, C.; Fang, P. MOF-Derived Spindle-Shaped Z-Scheme ZnO/ZnFe2O4 Heterojunction: A Magnetic Recovery Catalyst for Efficient Photothermal Degradation of Tetracycline Hydrochloride. Materials 2023, 16, 6639. https://doi.org/10.3390/ma16206639
Suo S, Ma W, Zhang S, Han Z, Wang Y, Li Y, Xiong Y, Liu Y, He C, Fang P. MOF-Derived Spindle-Shaped Z-Scheme ZnO/ZnFe2O4 Heterojunction: A Magnetic Recovery Catalyst for Efficient Photothermal Degradation of Tetracycline Hydrochloride. Materials. 2023; 16(20):6639. https://doi.org/10.3390/ma16206639
Chicago/Turabian StyleSuo, Shilong, Wenmei Ma, Siyi Zhang, Ziwu Han, Yumin Wang, Yuanyuan Li, Yi Xiong, Yong Liu, Chunqing He, and Pengfei Fang. 2023. "MOF-Derived Spindle-Shaped Z-Scheme ZnO/ZnFe2O4 Heterojunction: A Magnetic Recovery Catalyst for Efficient Photothermal Degradation of Tetracycline Hydrochloride" Materials 16, no. 20: 6639. https://doi.org/10.3390/ma16206639
APA StyleSuo, S., Ma, W., Zhang, S., Han, Z., Wang, Y., Li, Y., Xiong, Y., Liu, Y., He, C., & Fang, P. (2023). MOF-Derived Spindle-Shaped Z-Scheme ZnO/ZnFe2O4 Heterojunction: A Magnetic Recovery Catalyst for Efficient Photothermal Degradation of Tetracycline Hydrochloride. Materials, 16(20), 6639. https://doi.org/10.3390/ma16206639