Experimental Investigation of Tool Wear and Machining Quality of BTA Deep-Hole Drilling in Low-Carbon Alloy Steel SA-5083
Abstract
:1. Introduction
2. Experiments and Measurements
2.1. Machining Method and Workpiece Material
2.2. Experimental Equipment and Tools
2.3. Experimental Design and Measurements
3. Results and Discussions
3.1. Tool Wear
3.2. Macromorphology
3.3. Diameter
3.4. Roundness
3.5. Perpendicularity
3.6. Roughness
3.7. Microhardness
3.8. Residual Stress
4. Conclusions
- The outer insert and the first guide block were severely worn; the strength of the outer insert and the contact hardness of the first guide block should be increased. The wear forms of the BTA drill mainly included diffusion wear, abrasive wear, and adhesive wear.
- The hole diameter was greatly affected by the feed and drilling depth. With an increase in the feed and drilling depth, the diameter increased. The BTA deep-hole machining should strictly control the feed and drilling depth based on the aperture tolerance.
- The extrusion state between the guide blocks and the hole wall directly affected the roughness. With an increase in the feed and drilling depth, the roughness increased; with an increase in speed, the roughness decreased.
- The maximum microhardness of the hole wall was about 2.15 times that of the matrix material, and the depth of the hardened layer was about 130 μm, indicating severe machining strengthening on the hole wall. The residual stress was compressive stress. These factors can improve the fatigue and corrosion resistance of the hole wall.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, G.Q.; Yang, X.L.; Gong, Y.; Lu, D.Q.; Deng, J.G.; Gu, J.L.; Wu, Q.; Yang, Z.G. Failure analysis on unexpected fracture of the hydraulic expansion mandrel for tube to tubesheet expanding in the steam generator of nuclear power plant. Eng. Fail. Anal. 2023, 146, 107062. [Google Scholar] [CrossRef]
- Zhao, X.H.; Wang, M.J.; Chen, C.; Wang, X.; Ju, H.R.; Tian, W.X.; Qiu, S.Z.; Su, G.H. Three-dimensional study on the hy-draulic characteristics under the steam generator (SG) tube plugging operations for AP1000. Prog. Nucl. Energy 2019, 112, 63–74. [Google Scholar] [CrossRef]
- Guba, N.; Schumski, L.; Paulsen, T.; Karpuschewski, B. Vibration-assisted deep hole drilling of the aluminum material AlMgSi0.5. CIRP J. Manuf. Sci. Technol. 2022, 36, 57–66. [Google Scholar] [CrossRef]
- Si, Y.; Kong, L.F.; Chin, J.H.; Guo, W.C.; Wang, Q.L. Whirling detection in deep hole drilling process based on multivariate synchrosqueezing transform of orthogonal dual-channel vibration signals. Mech. Syst. Signal Process. 2022, 167, 108621. [Google Scholar] [CrossRef]
- Li, B.H.; Huang, C.Z.; Tang, Z.Y.; Chen, Z.; Liu, H.L.; Chen, Z.T.; Niu, J.H.; Wang, Z. Effect of drilling parameters on the hole surface integrity of low alloy steel for nuclear power during BTA deep hole drilling. Int. J. Adv. Manuf. Technol. 2023, 127, 565–577. [Google Scholar] [CrossRef]
- Gerken, J.F.; Klages, N.; Biermann, D.; Denkena, B. Development and analysis of a mechatronic system for in-process monitoring and compensation of straightness deviation in BTA deep hole drilling. Mech. Syst. Signal Process. 2022, 170, 108838. [Google Scholar] [CrossRef]
- Li, X.B.; Zheng, J.M.; Li, Y.; Xiao, J.M.; Guo, B.; Liu, C. Modeling and experimental investigation of drilling force for low-frequency axial vibration assisted BTA deep hole drilling. Int. J. Adv. Manuf. Technol. 2020, 111, 1721–1733. [Google Scholar] [CrossRef]
- Yue, C.S.; Cai, H.; Kong, L.R.; Liang, C.F.; Peng, Z.J.; Wang, Y. Wear behaviors of AISI 4145H drilling tool steel under drilling fluid environment conditions. Materials 2022, 15, 1221. [Google Scholar] [CrossRef]
- Lu, X.H.; Jia, Z.Y.; Wang, H.; Si, L.K.; Liu, Y.Y.; Wu, W.Y. Tool wear appearance and failure mechanism of coated carbide tools in micro-milling of Inconel 718 super alloy. Ind. Lubr. Tribol. 2016, 68, 267–277. [Google Scholar] [CrossRef]
- Caliskan, H.; Kucukkose, M. The effect of aCN/TiAlN coating on tool wear, cutting force, surface finish and chip morphology in face milling of Ti6Al4V superalloy. Int. J. Refract. Met. Hard Mater. 2015, 50, 304–312. [Google Scholar] [CrossRef]
- Lew, M.T.; Chaudhari, A.; Neo, W.K.; Kumar, A.S.; Amrun, M.R.; Rashid, M.A.; Rahman, M. Modeling of dynamic be-havior of multispan gundrilling shaft with coolant and its effect on straightness deviatione. CIRP J. Manuf. Sci. Technol. 2020, 29, 11–24. [Google Scholar] [CrossRef]
- Pena, B.; Aramendi, G.; Rivero, A.; Lopez de Lacalle, L.N. Monitoring of drilling for burr detection using spindle torque. Int. J. Mach. Tools Manuf. 2005, 45, 1614–1621. [Google Scholar] [CrossRef]
- Shao, Z.Y.; Jiang, X.G.; Geng, D.X.; Yang, Y.; Peng, Z.L.; Li, S.M.; Zhang, D.Y. Deep hole drilling of large-diameter Tita-nium Alloy with a novel rotary low-frequency vibration device. IEEE Access 2019, 7, 154872–154881. [Google Scholar] [CrossRef]
- Shi, Y.H.; Zheng, J.M.; Feng, P.; Shang, P.; Liu, C.; Chen, T.; Shan, S.J. BTA Deep Hole Vibration Drilling for Nickel-Based Alloys: Cooling Patterns and Cutter Tooth Wear Mechanisms. Materials 2022, 15, 8178. [Google Scholar] [CrossRef]
- Al-Tameemi, H.A.; Al-Dulaimi, T.; Awe, M.O.; Sharma, S.; Pimenov, D.Y.; Koklu, U.; Giasin, K. Evaluation of cut-ting-tool coating on the surface roughness and hole dimensional tolerances during drilling of Al6061-T651 alloy. Materials 2021, 14, 1783. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Shen, X.Q.; Bo, A.X.; Li, Y.M.; Zhan, H.F.; Gu, Y.T. A multiscale evaluation of the surface integrity in boring trepanning association deep hole drilling. Int. J. Mach. Tools Manuf. 2017, 123, 48–56. [Google Scholar] [CrossRef]
- Biermann, D.; Bleicher, E.; Heisel, U.; Klocke, F.; Mohring, H.C.; Shih, A. Deep hole drilling. CIRP Ann. Manuf. Technol. 2018, 67, 673–694. [Google Scholar] [CrossRef]
- Li, X.B.; Zheng, J.M.; Li, Y.; Kong, L.F.; Shi, W.C.; Guo, B. Investigation of chip deformation and breaking with staggered teeth BTA tool in deep hole drilling. Metals 2019, 9, 46. [Google Scholar] [CrossRef]
- Richardson, R.; Bhatti, R. A review of research into the role of guide pads in BTA deep-hole machining. J. Mater. Process. Technol. 2001, 110, 61–69. [Google Scholar] [CrossRef]
- Woon, K.S.; Chaudhari, A.; Rahman, M.; Wan, S.; Kumar, A.S. The effects of tool edge radius on drill deflection and hole misalignment in deep hole gundrilling of Inconel-718. CIRP Ann. Manuf. Technol. 2014, 63, 125–128. [Google Scholar] [CrossRef]
- Haddag, B.; Nouari, M.; Moufki, A. Experimental analysis of the BTA deep drilling and a new analytical thermome-chanical model for assessment of cutting forces and BTA drill design. Int. J. Adv. Manuf. Technol. 2020, 106, 455–469. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Tnay, G.L.; Liu, K.; Kumar, A.S. Effect of apex offset inconsistency on hole straightness deviation in deep hole gun drilling of Inconel 718. Int. J. Mach. Tools Manuf. 2018, 125, 123–132. [Google Scholar] [CrossRef]
- Tnay, G.L.; Wan, S.; Woon, K.S.; Yeo, S.H. The effects of dub-off angle on chip evacuation in single-lip deep hole gun drilling. Int. J. Mach. Tools Manuf. 2016, 108, 66–73. [Google Scholar] [CrossRef]
- Yang, S.C.; Tong, X.; Ma, X.Q.; Ji, W.; Liu, X.L.; Zhang, Y.H. The guide block structure design of boring and trepanning association (BTA) deep hole drilling. Int. J. Adv. Manuf. Technol. 2018, 99, 911–918. [Google Scholar] [CrossRef]
- Matsuzaki, K.; Ryu, T.; Sueoka, A.; Tsukamoto, K. Theoretical and experimental study on rifling mark generating phe-nomena in BTA deep hole drilling process (generating mechanism and countermeasure). Int. J. Mach. Tools Manuf. 2015, 88, 194–205. [Google Scholar] [CrossRef]
- Felinks, N.; Rinschede, T.; Biermann, D.; Stangier, D.; Tillmann, W.; Fuss, M.; Abrahams, H. Investigation into deep hole drilling of austenitic steel with advanced tool solutions. Int. J. Adv. Manuf. Technol. 2022, 118, 1087–1100. [Google Scholar] [CrossRef]
- Lopez de Lacalle, L.N.; Fernandez, A.; Olvera, D.; Lamikiz, A.; Olvera, D.; Rodriguez, C.; Elias, A. Moni-toring deep twist drilling for a rapid manufacturing of light high-strength parts. Mech. Syst. Signal Process. 2011, 25, 2745–2752. [Google Scholar] [CrossRef]
- Si, Y.; Zhang, Z.S.; Kong, L.F.; Zheng, J.M. Condition monitoring of deep-hole drilling process based on improved em-pirical wavelet de-noising and high multiple frequency components of rotation frequency. Int. J. Adv. Manuf. Technol. 2021, 114, 2201–2214. [Google Scholar] [CrossRef]
- Kong, L.F.; Cao, S.; Chin, J.H.; Si, Y.; Miao, F.L.; Li, Y. Vibration suppression of drilling tool system during deep-hole drilling process using independence mode space control. Int. J. Mach. Tools Manuf. 2020, 151, 103525. [Google Scholar] [CrossRef]
- Yu, D.G. Self-centering positioner and principle for locating and guiding deep-hole drills using oil films. Int. J. Adv. Manuf. Technol. 2017, 92, 639–649. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, X.Q.; Li, Y.M.; Yang, F.H.; Kwon, P. The effects of guide pads on bore diameter enlargement magni-tude in deep hole drilling. MATEC Web Conf. 2016, 77, 01021. [Google Scholar] [CrossRef]
- Neo, D.W.K.; Liu, K.; Kumar, A.S. High throughput deep-hole drilling of Inconel 718 using PCBN gun drill. J. Manuf. Process. 2020, 57, 302–311. [Google Scholar] [CrossRef]
- Zhu, X.H.; Zhang, R.; Li, T.; Dong, L.L.; Tang, Y. Study on straightness deviation control in the BTA deep hole drilling based on thermal-mechanical coupling simulation method. J. Adv. Mech. Des. Syst. Manuf. 2021, 15, 146. [Google Scholar] [CrossRef]
- Strodick, S.; Berteld, K.; Schmidt, R.; Biermann, D.; Zabel, A.; Walther, F. Influence of cutting parameters on the for-mation of white etching layers in BTA deep hole drilling. Tm-Tech. Mess. 2020, 87, 674–682. [Google Scholar] [CrossRef]
Material | Mn | Si | Cr | Al | S | P | V | Mo | Ti | Cu | Ni | C | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SA-5083 | 1.4 | 0.32 | 0.21 | 0.02 | 0.015 | 0.015 | 0.03 | 0.052 | - | - | 0.75 | 0.16 | other |
Inconel 690 | 0.23 | 0.07 | 30.39 | 0.22 | 0.002 | 0.006 | - | - | 0.26 | 0.02 | other | 0.023 | 8.88 |
Cutting Inserts | Insert Width | Approach Angle | Inclination Angle | Rake Angle | Guide Blocks | Position Angle |
---|---|---|---|---|---|---|
Central insert | 5 mm | −15° | 5° | −5° | 1st guide block | 87° |
Middle insert | 3.5 mm | 18° | 0° | 0° | 2nd guide block | 183° |
Outer insert | 4 mm | 18° | 0° | 0° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zhai, C.; He, W.; Lu, Y.; Zhang, B. Experimental Investigation of Tool Wear and Machining Quality of BTA Deep-Hole Drilling in Low-Carbon Alloy Steel SA-5083. Materials 2023, 16, 6686. https://doi.org/10.3390/ma16206686
Li X, Zhai C, He W, Lu Y, Zhang B. Experimental Investigation of Tool Wear and Machining Quality of BTA Deep-Hole Drilling in Low-Carbon Alloy Steel SA-5083. Materials. 2023; 16(20):6686. https://doi.org/10.3390/ma16206686
Chicago/Turabian StyleLi, Xubo, Chuanmiao Zhai, Wenqi He, Ye Lu, and Bodong Zhang. 2023. "Experimental Investigation of Tool Wear and Machining Quality of BTA Deep-Hole Drilling in Low-Carbon Alloy Steel SA-5083" Materials 16, no. 20: 6686. https://doi.org/10.3390/ma16206686
APA StyleLi, X., Zhai, C., He, W., Lu, Y., & Zhang, B. (2023). Experimental Investigation of Tool Wear and Machining Quality of BTA Deep-Hole Drilling in Low-Carbon Alloy Steel SA-5083. Materials, 16(20), 6686. https://doi.org/10.3390/ma16206686