Effect of Basalt Fiber Diameter on the Properties of Asphalt Mastic and Asphalt Mixture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt
2.1.2. Fiber
2.1.3. Filler
2.1.4. Aggregate and Gradation
2.2. Specimen Preparation
2.3. Test Methods
2.3.1. Monofilament Fiber Pullout Test
2.3.2. Temperature Sweep Test of Asphalt Mastic
2.3.3. Linear Amplitude Sweep Test of Asphalt Mastic
2.3.4. Bending Beam Rheometer Test of Asphalt Mastic
2.3.5. High-Temperature Stability Test of the Mixture
2.3.6. IDEAL-CT Test of Mixture
2.3.7. Low-Temperature Bending Beam Test of the Mixture
2.3.8. Water Stability Test of the Mixture
3. Results and Discussion
3.1. Fiber-Asphalt Interface Adhesion Characteristics
3.2. High-Temperature Performance Analysis of Fiber Asphalt Mastic
3.3. Mid-Temperature Performance Analysis of Fiber Asphalt Mastic
3.4. Low-Temperature Performance Analysis of Fiber Asphalt Mastic
3.5. High-Temperature Performance Analysis of Fiber Asphalt Mixture
3.6. Mid-Temperature Performance Analysis of Fiber Asphalt Mixture
3.7. Low-Temperature Performance Analysis of Fiber Asphalt Mixture
3.8. Water Stability Analysis of Fiber Asphalt Mixture
4. Conclusions
- (1)
- The test showed that the cohesiveness between 16 and 25 μm basalt fiber and asphalt mastic was in fiber failure mode at both temperatures of −12 °C and 25 °C. At the same temperature, the interface bonding strength of 16 μm fiber with asphalt mastic is larger than that of 25 μm, which increased by 34.18% and 11.01% at −12 °C and 25 °C, respectively.
- (2)
- Adding basalt fiber improved the SBS-modified asphalt’s rutting resistance and deformation recovery ability at high temperatures. The improvement effect of 16 mm basalt fiber was superior to that of 25 mm fiber.
- (3)
- A linear amplitude scanning test showed that basalt fiber could improve the fatigue resistance of asphalt mastic. At strain levels of 2.5%, 5.0%, and 10%, the fatigue life Nf of 16 μm basalt fiber asphalt mastic increased by 220.50%, 143.62%, and 84.78%, respectively, compared with that of 25 μm basalt fiber.
- (4)
- According to the low-temperature bending beam rheological test, basalt fiber would lower the mastic’s low-temperature performance, which conflicts with the low-temperature performance of the mixtures, indicating the bending beam rheological test may not be suitable for fiber asphalt mastics.
- (5)
- Adding fiber may raise the rutting stability of the asphalt mixture by 20.88% to 43.00%. As the fiber diameter shrank, the high-temperature stability improved.
- (6)
- The addition of 16 μm basalt fiber significantly increased the resistance of the mixture to crack initiation and propagation (18~85%), whereas the addition of a single doped 25 μm basalt fiber did not considerably increase the crack resistance at intermediate-temperature and low-temperature (about 5%). The diameter of the fiber asphalt mixture was also compounded, and the more 16 μm fiber there was in the mixture, the better resistance to cracking was achieved.
- (7)
- The water stability of the basalt fiber mixture could meet the specifications, and the fiber diameter had no appreciable impact on the water stability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jafarifar, N.; Pilakoutas, K.; Bennett, T. Moisture transport and drying shrinkage properties of steel–fiber-reinforced-concrete. Constr. Build. Mater. 2014, 73, 41–50. [Google Scholar] [CrossRef]
- Turbay, E.; Martinez-Arguelles, M.; Navarro-Donado, T.; Sánchez-Cotte, E.; Polo-Mendoza, R.; Covilla-Valera, E. Rheological Behaviour of WMA-Modified Asphalt Binders with Crumb Rubber. Polymers 2022, 14, 4148. [Google Scholar] [CrossRef] [PubMed]
- Park, B.; Cho, S.; Rahbar-Rastegar, R.; Nantung, T.E.; Haddock, J. Prediction of critical responses in full-depth asphalt pavements using the falling weight deflectometer deflection basin parameters. Constr. Build. Mater. 2022, 318, 126019. [Google Scholar] [CrossRef]
- Ghani, U.; Zamin, B.; Bashir, M.; Ahmad, M.; Sabri, M.; Keawsawasvong, S.; Anupam, B.R.; Sahoo, U.; Chandrappa, A. A methodological review on self-healing asphalt pavements. Constr. Build. Mater. 2022, 321, 126395. [Google Scholar]
- Ghani, U.; Zamin, B.; Bashir, M.; Ahmad, M.; Sabri, M.; Keawsawasvong, S. Comprehensive Study on the Performance of Waste HDPE and LDPE Modified Asphalt Binders for Construction of Asphalt Pavements Application. Polymers 2022, 14, 3673. [Google Scholar] [CrossRef] [PubMed]
- Perez, S.P.M.; Maicelo, P.A.A.O. Use of recycled asphalt as an aggregate for asphalt mixtures: Literary review. Innov. Infrastruct. Solut. 2021, 6, 146. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Tahami, S.A. The effect of using anti-stripping additives on moisture damage of hot mix asphalt. Int. J. Adhes. Adhes. 2018, 81, 90–97. [Google Scholar] [CrossRef]
- Stempihar, J.J.; Souliman, M.; Kaloush, K.E. Fiber-Reinforced Asphalt Concrete as Sustainable Paving Material for Airfields. Transp. Res. Rec. J. Transp. Res. Board 2012, 2266, 60–68. [Google Scholar] [CrossRef]
- Abdelsalam, M.; Yue, Y.; Khater, A.; Luo, D.; Musanyufu, J.; Qin, X. Laboratory Study on the Performance of Asphalt Mixes Modified with a Novel Composite of Diatomite Powder and Lignin Fiber. Appl. Sci. 2020, 10, 5517. [Google Scholar] [CrossRef]
- Park, K.S.; Shoukat, T.; Yoo, P.J.; Lee, S.H. Strengthening of hybrid glass fiber reinforced recycled hot-mix asphalt mixtures. Constr. Build. Mater. 2020, 258, 118947. [Google Scholar] [CrossRef]
- Wu, B.; Pei, Z.; Xiao, P.; Lou, K.; Wu, X. Influence of fiber-asphalt interface property on crack resistance of asphalt mixture. Case Stud. Constr. Mater. 2022, 17, e01703. [Google Scholar] [CrossRef]
- Slebi-Acevedo, C.J.; Lastra-González, P.; Castro-Fresno, D.; Bueno, M. An experimental laboratory study of fiber-reinforced asphalt mortars with polyolefin-aramid and polyacrylonitrile fibers. Constr. Build. Mater. 2020, 248, 118622. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Bella, G.D.; Valenza, A. A review on basalt fiber and its composites. Compos. B Eng. 2015, 74, 74–79. [Google Scholar] [CrossRef]
- Taherkhani, H.; Kamsari, S. Evaluating the properties of zinc production wastes as filler and theireffects on asphalt mastic. Constr. Build. Mater. 2020, 265, 120748. [Google Scholar] [CrossRef]
- Mohamed, A.; Han, Y.; Cao, Z.; Xu, X.; Xiao, F. Investigating bonding mechanism of rubberized RAP asphalt mastic from rheological and physiochemical perspectives. J. Clean. Prod. 2023, 404, 136978. [Google Scholar] [CrossRef]
- Das, A.; Singh, D. Evaluation of fatigue performance of asphalt mastics composed of nano hydrated lime filler. Constr. Build. Mater. 2021, 269, 121322. [Google Scholar] [CrossRef]
- Veropalumbo, R.; Oreto, C.; Viscione, N.; Russo, F. Investigating the environmental and mechanical properties of sustainable asphalt mastic solutions for road flexible pavements. Transp. Res. Procedia. 2023, 69, 225–232. [Google Scholar] [CrossRef]
- Bieliatynskyi, A.; Yang, S.; Pershakov, V.; Shao, M.; Ta, M. Study of crushed stone-mastic asphalt concrete using fiber from fly ash of thermal power plants. Case Stud. Constr. Mater. 2022, 16, e00877. [Google Scholar] [CrossRef]
- Wang, S.; Mallick, R.; Rahbar, N. Toughening mechanisms in polypropylene fiber-reinforced asphalt mastic at low temperature. Constr. Build. Mater. 2020, 248, 118690. [Google Scholar] [CrossRef]
- Xing, X.; Chen, S.; Li, Y.; Pei, J.; Zhang, J.; Wen, Y.; Li, R.; Cui, S. Effect of different fibers on the properties of asphalt mastics. Constr. Build. Mater. 2020, 262, 120005. [Google Scholar] [CrossRef]
- Qin, X.; Shen, A.; Guo, Y.; Li, Z.; Lv, Z. Characterization of asphalt mastics reinforced with basalt fibers. Constr. Build. Mater. 2018, 159, 508–516. [Google Scholar] [CrossRef]
- Adepu, R.; Ramayya, V.; Mamatha, A.; Ram, V. Fracture studies on basalt fiber reinforced asphalt mixtures with reclaimed asphalt pavement derived aggregates and warm mix additives. Constr. Build. Mater. 2023, 386, 131548. [Google Scholar] [CrossRef]
- Song, Y.; Sun, Y. Low-Temperature Crack Resistance of Basalt Fiber-Reinforced Phase-Change Asphalt Mixture Based on Digital-Image Correlation Technology. J. Mater. Civ. Eng. 2023, 35, 04023141. [Google Scholar] [CrossRef]
- Lou, K.; Xiao, P.; Kang, A.; Wu, Z.; Li, B.; Lu, P. Performance evaluation and adaptability optimization of hot mix asphalt reinforced by mixed lengths basalt fibers. Constr. Build. Mater. 2021, 292, 123373. [Google Scholar] [CrossRef]
- Pirmohammad, S.; Amani, B.; Shokorlou, Y.M. The effect of basalt fibers on fracture toughness of asphalt mixture. Fatigue Fract. Eng. M. 2020, 43, 1446–1460. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.; Zhang, Y.; Lv, Q.; Yan, C. Evaluating four typical fibers used for OGFC mixture modification regarding drainage, raveling, rutting and fatigue resistance. Constr. Build. Mater. 2020, 253, 119131. [Google Scholar] [CrossRef]
- Lou, K.; Xiao, P.; Wu, B.; Kang, A.; Wu, X. Effects of fiber length and content on the performance of ultra-thin wearing course modified by basalt fibers. Constr. Build. Mater. 2021, 313, 125439. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, K.; Xie, X.; Yao, X. Performance evaluation and material optimization of Micro-surfacing based on cracking and rutting resistance. Const. Build. Mater. 2019, 206, 193–200. [Google Scholar] [CrossRef]
- Lou, K.; Xiao, P.; Kang, A.; Wu, Z.; Lu, P. Suitability of fiber lengths for hot mix asphalt with different nominal maximum aggregate size: A pilot experimental investigation. Materials 2020, 13, 3685. [Google Scholar] [CrossRef] [PubMed]
- Pirmohammad, S.; Mengharpey, M. Influence of natural fibers on fracture strength of WMA (warm mix asphalt) concretes using a new fracture test specimen. Constr. Build. Mater. 2020, 251, 118927. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. China Communications Press: Beijing, China, 2011.
- Wu, B.; Pei, Z.; Luo, C.; Xia, J.; Chen, C.; Kang, A. Effect of different basalt fibers on the rheological behavior of asphalt mastic. Constr. Build. Mater. 2022, 318, 125718. [Google Scholar] [CrossRef]
- JTG E42-2004; Test Methods of Aggregate for Highway Engineering. China Communications Press: Beijing, China, 2005.
- AASHTO T 315-12; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2016.
- AASHTO TP101-12; Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep. American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2016.
- AASHTO TP 125-16; Standard Method of Test for Determining the Flexural Creep Stiffness of Asphalt Mixtures Using the Bending Beam Rheometer (BBR). American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2016.
- Pasetto, M.; Baldo, N. Fatigue Performance of Recycled Hot Mix Asphalt: A Laboratory Study. Adv. Mater. Sci. Eng. 2017, 10, 4397957. [Google Scholar] [CrossRef]
- Hussein, F.; Ismael, M.; Huseien, G. Rock Wool Fiber-Reinforced and Recycled Concrete Aggregate-Imbued Hot Asphalt Mixtures: Design and Moisture Susceptibility Evaluation. J. Compos. Sci. 2023, 7, 428. [Google Scholar] [CrossRef]
- Serin, S.; Önal, Y.; Emiroğlu, M.; Demir, E. Comparison of the effect of basalt and glass fibers on the fracture energy of asphalt mixes using semi-circular bending test. Constr. Build. Mater. 2020, 406, 133460. [Google Scholar] [CrossRef]
- Huang, C.; Gao, D.; Meng, T.; Yang, C. Investigation into Viscoelastic Properties of Fiber-Reinforced Asphalt Composite Concrete Based on the Burgers Model. Buildings 2023, 13, 499. [Google Scholar] [CrossRef]
- Meng, F.; Gao, D.; Chen, F.; Huang, C. Fatigue Performance Test and Life Calculation of Fiber-Reinforced Asphalt Concrete. Adv. World. Inform. Eng. 2022, 44, 133–139. [Google Scholar] [CrossRef]
- Davar, A.; Tanzadeh, J.; Fadaee, O. Experimental evaluation of the basalt fibers and diatomite powder compound on enhanced fatigue life and tensile strength of hot mix asphalt at low temperatures. Constr. Build. Mater. 2017, 153, 238–246. [Google Scholar] [CrossRef]
- Pei, Z.; Lou, K.; Kong, H.; Wu, B.; Wu, X. Effects of fiber diameter on crack resistance of asphalt mixtures reinforced by basalt fibers based on digital image correlation technology. Materials 2021, 14, 7426. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhu, C.; Tan, G.; Lv, Z.; Yang, J.; Ma, J. Laboratory Study on Properties of Diatomite and Basalt Fiber Compound Modified Asphalt Mastic. Adv. Mater. Sci. Eng. 2017, 10, 4175167. [Google Scholar] [CrossRef]
- Krayushkina, K.; Khymeryk, T.; Bieliatynskyi, A. Basalt fiber concrete as a new construction material for roads and airfields. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012088. [Google Scholar] [CrossRef]
Properties | Specification | Test Results | Test Method [31] | |
---|---|---|---|---|
Penetration (25 °C)/0.1 mm | 40~70 | 56 | T0604 | |
Penetration index PI | −0.4~1.0 | 0.6 | T0604 | |
Softening point/°C | ≮80 | 84.7 | T0606 | |
Ductility (5 cm/min, 5 °C)/cm | ≮30 | 46 | T0605 | |
Segregation (softening spreads)/°C | ≯2.5 | 1.5 | T0661 | |
Resilient recovery (25 °C)/% | ≮65 | 77 | T0662 | |
Residue after RTFOT | Quality changes/% | ±1.0 | −0.09 | T0610 |
Penetration ratio/% | ≮60 | 88 | T0604 | |
5 °C residual ductility/cm | ≮20 | 39 | T0605 |
Properties | Test Results | |
---|---|---|
16 μm | 25 μm | |
Breaking force/cN | 32.69 | 38.61 |
Elongation/% | 4.68 | 5.06 |
Modulus/GPa | 88 | 79 |
Density/g·cm−3 | 2.72 | 2.66 |
Water content/% | 0.1 | 0.1 |
Properties | Specification | Test Results | Test Method [33] |
---|---|---|---|
Water content/% | ≤1.0 | 0.43 | Drying method |
Relative density | ≥2.50 | 2.708 | T0352 |
Hydrophilic coefficient | <1 | 0.66 | T0353 |
Particle size range: <0.6 mm | 100 | 100 | T0351 |
Particle size range: <0.15 mm | 90~100 | 93.4 | T0351 |
Particle size range: <0.075 mm | 75~100 | 81.6 | T0351 |
Type | Apparent Relative Density (g/cm3) | Relative Density of Gross Volume (g/cm3) | Asphalt Mixture | |
---|---|---|---|---|
Limestone | 1# | 2.785 | 2.731 | AC-13 |
2# | 2.781 | 2.722 | ||
Basalt | 3# | 2.900 | 2.850 | |
4# | 2.861 | 2.796 | ||
Limestone | 1# | 2.718 | 2.686 | AC-20 |
2# | 2.779 | 2.731 | ||
3# | 2.776 | 2.719 | ||
Basalt | 4# | 2.855 | 2.791 |
Screen Aggregate | Percentage of Passing through a Square Hole Sieve (mm)/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
1# | 100 | 91.1 | 33.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
2# | 100 | 98.3 | 83.5 | 4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
3# | 100 | 100 | 100 | 92.9 | 6.2 | 2.3 | 2 | 1.9 | 1.8 | 1.6 |
4# | 100 | 100 | 100 | 97.7 | 66.9 | 35.5 | 21.1 | 9.9 | 5.5 | 3.9 |
Screen Aggregate | Percentage of Passing through a Square Hole Sieve (mm)/% | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
26.5 | 19 | 16 | 13.2 | 9.5 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | 0.075 | |
1# | 100 | 31.9 | 12.8 | 1.9 | 0.5 | 0.5 | 0.5 | 0.4 | 0.4 | 0.3 | 0.2 | 0.1 |
2# | 100 | 100 | 100 | 91.1 | 33.5 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
3# | 100 | 100 | 100 | 98.3 | 83.5 | 4 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
4# | 100 | 100 | 100 | 100 | 100 | 97.7 | 66.9 | 35.5 | 21.1 | 9.9 | 5.5 | 3.9 |
Specimen | Model A | Model B | α | 2.5%Nf | 5%Nf | 10%Nf |
---|---|---|---|---|---|---|
SBS | 70,400 | 4.57 | 2.28 | 1067.157 | 44.323 | 1.985 |
SBS-16 μm | 6,154,000 | 3.42 | 1.71 | 268,315.212 | 25,089.889 | 2346.64 |
SBS-25 μm | 1,336,000 | 3.02 | 1.51 | 83,716.875 | 10,298.677 | 1269.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Liu, M.; Kang, A.; Zhang, Y.; Zheng, Z. Effect of Basalt Fiber Diameter on the Properties of Asphalt Mastic and Asphalt Mixture. Materials 2023, 16, 6711. https://doi.org/10.3390/ma16206711
Li B, Liu M, Kang A, Zhang Y, Zheng Z. Effect of Basalt Fiber Diameter on the Properties of Asphalt Mastic and Asphalt Mixture. Materials. 2023; 16(20):6711. https://doi.org/10.3390/ma16206711
Chicago/Turabian StyleLi, Bo, Minghao Liu, Aihong Kang, Yao Zhang, and Zhetao Zheng. 2023. "Effect of Basalt Fiber Diameter on the Properties of Asphalt Mastic and Asphalt Mixture" Materials 16, no. 20: 6711. https://doi.org/10.3390/ma16206711
APA StyleLi, B., Liu, M., Kang, A., Zhang, Y., & Zheng, Z. (2023). Effect of Basalt Fiber Diameter on the Properties of Asphalt Mastic and Asphalt Mixture. Materials, 16(20), 6711. https://doi.org/10.3390/ma16206711