Probing the Effect of Linear and Crosslinked POE-g-GMA on the Properties of Asphalt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Methods
2.2.1. Preparation of Crosslinked POE-g-GMA
2.2.2. Preparation of the Modified Asphalts
2.2.3. Laboratory Aging
2.3. Characterizations
2.3.1. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.3.2. Gel Contents Measurement
2.3.3. Differential Scanning Calorimetry (DSC)
2.3.4. Storage Stability and Conventional Physical Properties
2.3.5. Small-Angle X-ray Scattering (SAXS)
2.3.6. Dynamic Shear Rheometer (DSR)
2.3.7. Morphological Characterization
2.3.8. Electron Paramagnetic Resonance (EPR) Test
3. Results and Discussion
3.1. Formation of Crosslinked POE-g-GMA
3.2. Storage Stability of Modified Asphalts
3.3. Penetration, Softening Point and Ductility
3.4. Dynamic Rheological Properties
3.5. Morphology of Modified Asphalts
3.6. Thermal Oxidation Aging Resistance of Modified Asphalts
4. Conclusions
- 1.
- The compatibility between linear or crosslinked POE-g-GMA and asphalt can be evaluated from macroscopic and microscopic perspectives via measuring the difference in softening points and SAXS characterizations. It is found that asphalt modified with linear or low-degree-crosslinked POE-g-GMA shows excellent hot storage stability compared to POE-modified asphalt. However, high crosslinking may restrain the reactivity of epoxy groups in POE-g-GMA, which has an adverse effect on its compatibility with asphalt.
- 2.
- With the modification of POE-g-GMA, the penetration reduces and the rheological properties increase as well as the softening point, which endows asphalt with a good ability to resist high-temperature rutting, while the crosslinking modification of POE-g-GMA further enhances the modification effect.
- 3.
- Moreover, the crosslinking modification of POE-g-GMA has a positive impact on the thermal oxidation aging resistance of modified asphalt for oxidation reactions are inhibited during the process of aging, and the movement ability of macromolecular free radicals are restricted, thereby slowing down the reaction rate of free radical chain growth. The EPR technique provided a unique and powerful tool to elucidate the radical mechanisms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, B.; Shi, K.; Niu, Y.F.; Liu, Z.C.; Zheng, J.L. Probing the modification mechanism of and customized processing design for SBS-modified asphalts mediated by potentiometric titration. Constr. Build. Mater. 2020, 234, 117385. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 151, 464–478. [Google Scholar] [CrossRef]
- Xiao, F.P.; Amirkhanian, S.; Wang, H.N.; Hao, P.W. Rheological property investigations for polymer and polyphosphoric acid modified asphalt binders at high temperatures. Constr. Build. Mater. 2014, 64, 316–323. [Google Scholar] [CrossRef]
- Bensason, S.; Stepanov, E.V.; Chum, S.P.; Hiltner, A.; Baer, E. Deformation of elastomeric ethylene-octene copolymers. Macromolecules 1997, 30, 2436–2444. [Google Scholar] [CrossRef]
- Bensason, S.; Minick, J.; Moet, A.A.; Chum, S.P.; Hiltner, A.; Baer, E. Classification of homogeneous ethylene-octene copolymers based on comonomer content. J. Polym. Sci. Polym. Phys. 1996, 34, 1301–1315. [Google Scholar] [CrossRef]
- Behnood, A.; Gharehveran, M.M. Morphology, rheology, and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar] [CrossRef]
- Li, M.R.; Chen, X.; Cong, P.L.; Luo, C.J.; Zhu, L.Y.; Li, H.Y.; Zhang, Y.M.; Chao, M.; Yan, L.K. Facile synthesis of polyethylene-modified asphalt by chain end-functionalization. Compos. Commun. 2022, 30, 101088. [Google Scholar] [CrossRef]
- Polacco, G.; Stastna, J.; Biondi, D.; Zanzotto, L. Relation between polymer architecture and nonlinear viscoelastic behavior of modified asphalts. Curr. Opin. Colloid Interface Sci. 2006, 11, 230–245. [Google Scholar] [CrossRef]
- Behnood, A.; Olek, J. Stress-dependent behavior and rutting resistance of modified asphalt binders: An MSCR approach. Constr. Build. Mater. 2017, 157, 635–646. [Google Scholar] [CrossRef]
- Nien, Y.H.; Yeh, P.H.; Chen, W.C.; Liu, W.T.; Chen, J.H. Investigation of flow properties of asphalt binders containing polymer modifiers. Polym. Compos. 2008, 29, 518–524. [Google Scholar] [CrossRef]
- Padhan, R.K.; Leng, Z.; Sreeram, A.; Xu, X. Compound modification of asphalt with styrene-butadiene-styrene and waste polyethylene terephthalate functionalized additives. J. Clean. Prod. 2020, 277, 124286. [Google Scholar] [CrossRef]
- Navarro, F.J.; Partal, P.; García-Morales, M.; Martínez-Boza, F.J.; Gallegos, C. Bitumen modification with a low-molecular-weight reactive isocyanate-terminated polymer. Fuel 2007, 86, 2291–2299. [Google Scholar] [CrossRef]
- Research Institute of Highway Ministry of Transport. JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. Ministry of Transportation: Beijing, China, 2011. [Google Scholar]
- Qu, Y.D.; Chen, Y.H.; Ling, X.Y.; Wu, J.L.; Hong, J.T.; Wang, H.T.; Li, Y.J. Reactive micro-crosslinked elastomer for supertoughened polylactide. Macromolecules 2022, 55, 7711–7723. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Liu, X.Y.; Li, Y.Q.; Wu, D.F.; Zhang, M. Understanding the fracture toughness of gadolinium- and lead-containing plexiglass. Polym. Eng. Sci. 2023, 63, 441–453. [Google Scholar] [CrossRef]
- Ouyang, C.F.; Gao, Q.; Shi, Y.T.; Shan, X.Q. Compatibilizer in waste tire powder and low-density polyethylene blends and the blends modified asphalt. J. Appl. Polym. Sci. 2011, 123, 485–492. [Google Scholar] [CrossRef]
- Padhan, R.K.; Sreeram, A. Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives. Constr. Build. Mater. 2018, 188, 772–780. [Google Scholar] [CrossRef]
- Yu, C.H.; Hu, K.; Yang, Q.L.; Wang, D.D.; Zhang, W.G.; Chen, G.X.; Kapyelata, C. Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations. Polymers 2021, 13, 1658. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.X.; Zhang, Y.Z. The research of GMA-g-LDPE modified Qinhuangdao bitumen. Constr. Build. Mater. 2008, 22, 1067–1073. [Google Scholar] [CrossRef]
- Redelius, P.; Soenen, H. Relation between bitumen chemistry and performance. Fuel 2015, 140, 34–43. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, C.H.; Wu, D.F.; Guo, X.T.; Yu, L.; Zhang, M. Probing the effect of straight chain fatty acids on the properties of lead-containing plexiglass. React. Chem. Eng. 2021, 6, 1628–1634. [Google Scholar] [CrossRef]
- Ge, D.D.; Yan, K.Z.; You, L.Y.; Wang, Z.X. Modification mechanism of asphalt modified with Sasobit and Polyphosphoric acid (PPA). Constr. Build. Mater. 2017, 143, 419–428. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Hao, P.W.; Dong, S.; Li, Y.; Yuan, G.A. Asphalt binder micro-characterization and testing approaches: A review. Measurement 2020, 151, 107255. [Google Scholar] [CrossRef]
- Li, M.R.; Luo, C.J.; Zhu, L.Y.; Li, H.Y.; Cong, P.L.; Feng, Y.Y.; Yan, L.K. A novel epoxy-terminated polyethylene modified asphalt with low-viscosity and high storage stability. Constr. Build. Mater. 2022, 335, 127473. [Google Scholar] [CrossRef]
- Azarhoosh, A.; Koohmishi, M. Investigation of the rutting potential of asphalt binder and mixture modified by styrene-ethylene/propylene-styrene nanocomposite. Constr. Build. Mater. 2020, 255, 119363. [Google Scholar] [CrossRef]
- Xiao, Y.; Chang, X.W.; Yan, B.X.; Zhang, X.S.; Yunusa, M.; Yu, R.E.; Chen, Z.W. SBS morphology characteristics in asphalt binder and their relation with viscoelastic properties. Constr. Build. Mater. 2021, 301, 124292. [Google Scholar] [CrossRef]
- Gong, Y.F.; Pang, Y.Z.; Li, F.Y.; Jin, W.D.; Bi, H.P.; Ma, Y.L. Analysis of the influence of SBS content and structure on the performance of SBS/CR composite modified asphalt. Adv. Mater. Sci. Eng. 2021, 2021, 5585891. [Google Scholar] [CrossRef]
- Lv, S.T.; Xia, C.D.; Yang, Q.; Guo, S.C.; You, L.Y.; Guo, Y.P.; Zheng, J.L. Improvements on high-temperature stability, rheology, and stiffness of asphalt binder modified with waste crayfish shell powder. J. Clean. Prod. 2020, 264, 121745. [Google Scholar] [CrossRef]
- Vargas, M.A.; Vargas, M.A.; Sánchez-Sólis, A.; Manero, O. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Constr. Build. Mater. 2013, 45, 243–250. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and image analysis of polymer modified bitumens. Constr. Build. Mater. 2009, 23, 1986–1992. [Google Scholar] [CrossRef]
- Dong, F.Q.; Zhao, W.Z.; Zhang, Y.Z.; Wei, J.M.; Fan, W.Y.; Yu, Y.J.; Wang, Z. Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt. Constr. Build. Mater. 2014, 62, 1–7. [Google Scholar] [CrossRef]
- Yan, C.Q.; Huang, W.D.; Xiao, F.P.; Lv, Q. Influence of polymer and sulphur dosages on attenuated total reflection Fourier transform infrared upon Styrene-Butadiene-Styrenemodified asphalt. Road Mater. Pavement Des. 2017, 20, 1586–1600. [Google Scholar] [CrossRef]
- Luo, Y.H.; Li, G.L.; Chen, L.; Hong, F.F. Preparation and evaluation of bacterial nanocellulose/hyaluronic acid composite artificial cornea for application of corneal transplantation. Biomacromolecules 2023, 24, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.G.; Meng, H.H.; Xia, C.Y.; Chen, M.Y.; Lu, T.Y.; Zhou, H. Effect of dry-wet cycle aging on physical properties and chemical composition of SBS-modified asphalt binder. Mater. Struct. 2021, 54, 120. [Google Scholar] [CrossRef]
- Peng, C.; Guo, C.; You, Z.P.; Xu, F.; Ma, W.B.; You, L.Y.; Li, T.J.; Zhou, L.Z.; Huang, S.F.; Ma, H.C.; et al. The effect of waste engine oil and waste polyethylene on UV aging resistance of asphalt. Polymers 2020, 12, 602. [Google Scholar] [CrossRef] [PubMed]
- Li, L.M.; Guo, Z.Y.; Ran, L.F.; Zhang, J.W. Study on low-temperature cracking performance of asphalt under heat and light together conditions. Materials 2020, 13, 1541. [Google Scholar] [CrossRef]
- Wang, S.F.; Xie, Y.G. Crumb tire rubber polyolefin elastomer modified asphalt with hot storage stability. Prog. Rubber Plast. Recycl. Technol. 2016, 32, 25–38. [Google Scholar] [CrossRef]
- Liu, S.J.; Zhou, S.B.; Xu, Y.S. Evaluation of cracking properties of SBS-modified binders containing organic montmorillonite. Constr. Build. Mater. 2018, 175, 196–205. [Google Scholar] [CrossRef]
- Ouyang, C.F.; Wang, S.F.; Zhang, Y.; Zhang, Y.X. Improving the aging resistance of styrene-butadienestyrene tri-block copolymer modified asphalt by addition of antioxidants. Polym. Degrad. Stab. 2006, 91, 795–804. [Google Scholar] [CrossRef]
- Liu, S.; Shan, L.Y.; Li, G.N.; Underwood, B.S.; Qi, C. Molecular-based asphalt oxidation reaction mechanism and aging resistance optimization strategies based on quantum chemistry. Mater. Des. 2022, 223, 111225. [Google Scholar] [CrossRef]
- Smith, L.M.; Aitken, H.M.; Coote, M.L. The fate of the peroxyl radical in autoxidation: How does polymer degradation really occur? Acc. Chem. Res. 2018, 51, 2006–2013. [Google Scholar] [CrossRef]
- Li, J.W.; Ye, X.; Zhao, Y.K.; Yang, D.; Li, D.D.; Han, C.C.; Li, X. Structure-performance evolution on thermal-oxidative aging of CeO2/SBS co-modified asphalt. Int. J. Pavement Eng. 2022, 23, 1–9. [Google Scholar] [CrossRef]
- Pipintakos, G.; Soenen, H.; Ching, H.Y.V.; Velde, C.V.; Van Doorslaer, S.; Lemière, F.; Varveri, A.; Van den Bergh, W. Exploring the oxidative mechanisms of bitumen after laboratory short- and long-term ageing. Constr. Build. Mater. 2021, 289, 123182. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Chen, Z.Y.; Zhao, R.; Wang, K.; Wu, D.F.; Wang, C.H.; Zhang, M. Insight into the role of free volume in irradiation resistance to discoloration of lead-containing plexiglass. J. Appl. Polym. Sci. 2022, 139, 51545. [Google Scholar] [CrossRef]
Properties | Value | Standard |
---|---|---|
Penetration (25 °C, 100 g, 5 s) (0.1 mm) | 63.2 | ASTM D5 |
Softening Point (°C) | 47.7 | ASTM D36 |
Ductility (5 cm/min, 10 °C) (cm) | 62.0 | ASTM D113 |
Viscosity (60 °C), Pa·s | 213 | ASTM D2171 |
Code | x | Content of PG-x (wt%) |
---|---|---|
A-1PG | 0 | 1 |
A-2PG | 0 | 2 |
A-3PG | 0 | 3 |
A-4PG | 0 | 4 |
A-3PG-0.05 | 0.05 | 3 |
A-3PG-0.1 | 0.1 | 3 |
A-3PG-0.2 | 0.2 | 3 |
Sample | Penetration (0.1 mm) (25 °C, 100 g, 5 s) | Softening Point (°C) | Ductility (cm) (5 cm/min, 10 °C) |
---|---|---|---|
Asphalt | 63.2 ± 0.1 | 47.7 ± 0.3 | 62.0 ± 0.4 |
A-1PG | 52.4 ± 0.3 | 50.9 ± 0.2 | 15.5 ± 0.6 |
A-2PG | 47.0 ± 0.2 | 51.3 ± 0.1 | 15.7 ± 0.6 |
A-3PG | 44.0 ± 0.3 | 52.6 ± 0.6 | 17.6 ± 0.8 |
A-4PG | 40.2 ± 0.6 | 54.9 ± 0.3 | 18.8 ± 0.5 |
A-3PG | 44.0 ± 0.1 | 52.6 ± 0.3 | 17.6 ± 0.9 |
A-3PG-0.05 | 44.1 ± 0.4 | 56.6 ± 0.1 | 16.5 ± 0.3 |
A-3PG-0.1 | 44.4 ± 0.1 | 57.6 ± 0.2 | 14.1 ± 0.6 |
A-3PG-0.2 | 45.4 ± 0.2 | 59.2 ± 0.7 | 13.1 ± 0.8 |
Sample | Penetration (0.1 mm) (25 °C, 100 g, 5 s) | Softening Point (°C) | Ductility (cm) (5 cm/min, 10 °C) |
---|---|---|---|
Asphalt | 41.4 ± 0.3 | 54.4 ± 0.2 | 25.3 ± 0.6 |
A-3PG | 30.4 ± 0.7 | 58.8 ± 0.6 | 8.0 ± 0.9 |
A-3PG-0.05 | 30.5 ± 0.2 | 61.5 ± 0.3 | 7.7 ± 0.7 |
A-3PG-0.1 | 30.9 ± 0.7 | 61.9 ± 0.2 | 7.5 ± 0.3 |
A-3PG-0.2 | 32.0 ± 0.3 | 62.5 ± 0.7 | 7.2 ± 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Qian, P.; Xiao, P.; Kang, A.; Jiang, C.; Kou, C.; Wang, Z.; Li, Y. Probing the Effect of Linear and Crosslinked POE-g-GMA on the Properties of Asphalt. Materials 2023, 16, 6564. https://doi.org/10.3390/ma16196564
Zhang Y, Qian P, Xiao P, Kang A, Jiang C, Kou C, Wang Z, Li Y. Probing the Effect of Linear and Crosslinked POE-g-GMA on the Properties of Asphalt. Materials. 2023; 16(19):6564. https://doi.org/10.3390/ma16196564
Chicago/Turabian StyleZhang, Yujuan, Pei Qian, Peng Xiao, Aihong Kang, Chenguang Jiang, Changjiang Kou, Zhifeng Wang, and Yuqing Li. 2023. "Probing the Effect of Linear and Crosslinked POE-g-GMA on the Properties of Asphalt" Materials 16, no. 19: 6564. https://doi.org/10.3390/ma16196564
APA StyleZhang, Y., Qian, P., Xiao, P., Kang, A., Jiang, C., Kou, C., Wang, Z., & Li, Y. (2023). Probing the Effect of Linear and Crosslinked POE-g-GMA on the Properties of Asphalt. Materials, 16(19), 6564. https://doi.org/10.3390/ma16196564