Evaluating the Biomechanical Integrity of Various Constructs Utilized for First Metatarsophalangeal Joint Arthrodesis: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Search Set-Up
2.2. Inclusion/Exclusion Criteria
2.3. Study Definitions
2.4. Data Extraction
2.5. Statistical Analysis
3. Results
3.1. Initial Search Results
3.2. Study Demographics
3.3. Plate Fixation:
3.4. Screw Fixation
3.5. Staple Fixation
3.6. Screw vs. Plate Fixation:
3.7. Type of Osteotomy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mandell, D.; Karbassi, J.; Zhou, H.; Burroughs, B.; Aurigemma, P.; Patel, A.R. A locking compression plate versus the gold-standard non-locking plate with lag screw for first metatarsophalangeal fusion: A biomechanical comparison. Foot 2018, 34, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Glasoe, W.M.; Yack, H.J.; Saltzman, C.L. Anatomy and biomechanics of the first ray. Phys. Ther. 1999, 79, 854–859. [Google Scholar] [CrossRef] [PubMed]
- Saltzman, C.L.; Nawoczenski, D.A. Complexities of foot architecture as a base of support. J. Orthop. Sport. Phys. Ther. 1995, 21, 354–360. [Google Scholar] [CrossRef]
- Al-Munajjed, A.A.; Bischoff, J.E.; Dharia, M.A.; Telfer, S.; Woodburn, J.; Carbes, S. Metatarsal Loading During Gait-A Musculoskeletal Analysis. J. Biomech. Eng. 2016, 138, 4032413. [Google Scholar] [CrossRef] [PubMed]
- Kristen, K.H.; Berger, K.; Berger, C.; Kampla, W.; Anzbock, W.; Weitzel, S.H. The first metatarsal bone under loading conditions: A finite element analysis. Foot Ankle Clin. 2005, 10, 1–14. [Google Scholar] [CrossRef]
- Roth, W.; Hoch, C.; Gross, C.E.; Scott, D.J. First metatarsophalangeal arthrodesis outcomes for hallux rigidus versus hallux valgus. Foot Ankle Surg. 2023, 29, 50–55. [Google Scholar] [CrossRef]
- Koutsouradis, P.; Savvidou, O.D.; Stamatis, E.D. Arthrodesis of the first metatarsophalangeal joint: The “when and how”. World J. Orthop. 2021, 12, 485–494. [Google Scholar] [CrossRef]
- DeSandis, B.; Pino, A.; Levine, D.S.; Roberts, M.; Deland, J.; O’Malley, M.; Elliott, A. Functional Outcomes Following First Metatarsophalangeal Arthrodesis. Foot Ankle Int. 2016, 37, 715–721. [Google Scholar] [CrossRef]
- Womack, J.W.; Ishikawa, S.N. First metatarsophalangeal arthrodesis. Foot Ankle Clin. 2009, 14, 43–50. [Google Scholar] [CrossRef]
- Mann, R.A. Disorders of the First Metatarsophalangeal Joint. J. Am. Acad. Orthop. Surg. 1995, 3, 34–43. [Google Scholar] [CrossRef]
- Hunt, K.J.; Barr, C.R.; Lindsey, D.P.; Chou, L.B. Locked versus nonlocked plate fixation for first metatarsophalangeal arthrodesis: A biomechanical investigation. Foot Ankle Int. 2012, 33, 984–990. [Google Scholar] [CrossRef]
- Gaudin, G.; Coillard, J.Y.; Augoyard, M.; Tourne, Y.; Meusnier, T.; Beaudet, P.; Bernard, J.N.; Augoyard, R.; Besse, J.L.; French Association of Foot Surgery. Incidence and outcomes of revision surgery after first metatarsophalangeal joint arthrodesis: Multicenter study of 158 cases. Orthop. Traumatol. Surg. Res. 2018, 104, 1221–1226. [Google Scholar] [CrossRef]
- Witkowski, W.; Kuik, L.; Rucka, M.; Daszkiewicz, K.; Andrzejewska, A.; Luczkiewicz, P. Medially positioned plate in first metatarsophalangeal joint arthrodesis. PLoS ONE 2021, 16, e0260572. [Google Scholar] [CrossRef] [PubMed]
- LaCoste, K.L.; Andrews, N.A.; Ray, J.; Harrelson, W.M.; Shah, A. First Metatarsophalangeal Joint Arthrodesis: A Narrative Review of Fixation Constructs and Their Evolution. Cureus 2021, 13, e14458. [Google Scholar] [CrossRef] [PubMed]
- Asif, M.; Qasim, S.N.; Kannan, S.; Bhatia, M. A Consecutive Case Series of 166 First Metatarsophalangeal Joint Fusions Using a Combination of Cup and Cone Reamers and Crossed Cannulated Screws. J. Foot Ankle Surg. 2018, 57, 462–465. [Google Scholar] [CrossRef]
- Wanivenhaus, F.; Espinosa, N.; Tscholl, P.M.; Krause, F.; Wirth, S.H. Quality of Early Union After First Metatarsophalangeal Joint Arthrodesis. J. Foot Ankle Surg. 2017, 56, 50–53. [Google Scholar] [CrossRef] [PubMed]
- Filomeno, P.; Lopez, J. Republication of “First Metatarsophalangeal Joint Arthrodesis: Functional Outcomes Using 2 Different Fixation Techniques. Is More Expensive Better?”. Foot Ankle Orthop. 2023, 8, 24730114231193424. [Google Scholar] [CrossRef] [PubMed]
- Chien, C.; Alfred, T.; Freihaut, R.; Pit, S. First Metatarsophalangeal Joint Arthrodesis in Hallux Valgus Versus Hallux Rigidus Using Cup and Cone Preparation Compression Screw and Dorsal Plate Fixation. Cureus 2017, 9, e1786. [Google Scholar] [CrossRef]
- Bartak, V.; Stedry, J.; Hornova, J.; Hert, J.; Tichy, P.; Hromadka, R. Biomechanical Study Concerning the Types of Resection in Arthrodesis of First Metatarsophalangeal Joint. J. Foot Ankle Surg. 2020, 59, 1135–1138. [Google Scholar] [CrossRef]
- Doty, J.; Coughlin, M.; Hirose, C.; Kemp, T. Hallux metatarsophalangeal joint arthrodesis with a hybrid locking plate and a plantar neutralization screw: A prospective study. Foot Ankle Int. 2013, 34, 1535–1540. [Google Scholar] [CrossRef]
- Goucher, N.R.; Coughlin, M.J. Hallux metatarsophalangeal joint arthrodesis using dome-shaped reamers and dorsal plate fixation: A prospective study. Foot Ankle Int. 2006, 27, 869–876. [Google Scholar] [CrossRef]
- Fuld, R.S., 3rd; Kumparatana, P.; Kelley, J.; Anderson, N.; Baldini, T.; Younger, A.S.E.; Hunt, K.J. Biomechanical Comparison of Low-Profile Contoured Locking Plate with Single Compression Screw to Fully Threaded Compression Screws for First MTP Fusion. Foot Ankle Int. 2019, 40, 836–844. [Google Scholar] [CrossRef]
- Campbell, B.; Schimoler, P.; Belagaje, S.; Miller, M.C.; Conti, S.F. Weight-bearing recommendations after first metatarsophalangeal joint arthrodesis fixation: A biomechanical comparison. J. Orthop. Surg. Res. 2017, 12, 23. [Google Scholar] [CrossRef]
- Politi, J.; John, H.; Njus, G.; Bennett, G.L.; Kay, D.B. First metatarsal-phalangeal joint arthrodesis: A biomechanical assessment of stability. Foot Ankle Int. 2003, 24, 332–337. [Google Scholar] [CrossRef]
- Lucas, K.J.; Morris, R.P.; Buford, W.L., Jr.; Panchbhavi, V.K. Biomechanical comparison of first metatarsophalangeal joint arthrodeses using triple-threaded headless screws versus partially threaded lag screws. Foot Ankle Surg. 2014, 20, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Foote, K.M.; Teasdall, R.D.; Tanaka, M.L.; Scott, A.T. First metatarsophalangeal arthrodesis: A biomechanical comparison of three fixation constructs. J. Surg. Orthop. Adv. 2012, 21, 223–231. [Google Scholar] [PubMed]
- Aiyer, A.A.; Myerson, M.S.; Dall, G.; Price, J.; Widmer, J. The Biomechanical Evaluation of Revision First Metatarsophalangeal Arthrodesis: A Cadaveric Study. Foot Ankle Spec. 2015, 8, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Harris, E.; Moroney, P.; Tourne, Y. Arthrodesis of the first metatarsophalangeal joint-A biomechanical comparison of four fixation techniques. Foot Ankle Surg. 2017, 23, 268–274. [Google Scholar] [CrossRef]
- Willmott, H.; Al-Wattar, Z.; Halewood, C.; Dunning, M.; Amis, A. Evaluation of different shape-memory staple configurations against crossed screws for first metatarsophalangeal joint arthrodesis: A biomechanical study. Foot Ankle Surg. 2018, 24, 259–263. [Google Scholar] [CrossRef]
- Schafer, K.A.; Baldini, T.; Hamati, M.; Backus, J.D.; Hunt, K.J.; McCormick, J.J. Two Orthogonal Nitinol Staples and Combined Nitinol Staple-Screw Constructs for a First Metatarsophalangeal Joint Arthrodesis: A Biomechanical Cadaver Study. Foot Ankle Int. 2022, 43, 1493–1500. [Google Scholar] [CrossRef]
- Buranosky, D.J.; Taylor, D.T.; Sage, R.A.; Sartori, M.; Patwardhan, A.; Phelan, M.; Lam, A.T. First metatarsophalangeal joint arthrodesis: Quantitative mechanical testing of six-hole dorsal plate versus crossed screw fixation in cadaveric specimens. J. Foot Ankle Surg. 2001, 40, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Curtis, M.J.; Myerson, M.; Jinnah, R.H.; Cox, Q.G.; Alexander, I. Arthrodesis of the first metatarsophalangeal joint: A biomechanical study of internal fixation techniques. Foot Ankle 1993, 14, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Rongstad, K.M.; Miller, G.J.; Vander Griend, R.A.; Cowin, D. A biomechanical comparison of four fixation methods of first metatarsophalangeal joint arthrodesis. Foot Ankle Int. 1994, 15, 415–419. [Google Scholar]
- Sykes, A.; Hughes, A.W. A biomechanical study using cadaveric toes to test the stability of fixation techniques employed in arthrodesis of the first metatarsophalangeal joint. Foot Ankle 1986, 7, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Faraj, A.A.; Naraen, A.; Twigg, P. A comparative study of wire fixation and screw fixation in arthrodesis for the correction of hallux rigidus using an in vitro biomechanical model. Foot Ankle Int. 2007, 28, 89–91. [Google Scholar] [CrossRef]
- Neufeld, S.K.; Parks, B.G.; Naseef, G.S.; Melamed, E.A.; Schon, L.C. Arthrodesis of the first metatarsophalangeal joint: A biomechanical study comparing memory compression staples, cannulated screws, and a dorsal plate. Foot Ankle Int. 2002, 23, 97–101. [Google Scholar] [CrossRef]
- Molloy, S.; Burkhart, B.G.; Jasper, L.E.; Solan, M.C.; Campbell, J.T.; Belkoff, S.M. Biomechanical comparison of two fixation methods for first metatarsophalangeal joint arthrodesis. Foot Ankle Int. 2003, 24, 169–171. [Google Scholar] [CrossRef]
- DeOrio, J.K. Technique Tip: Arthrodesis of the First Metatarsophalangeal Joint–Prevention of Excessive Dorsiflexion. Foot Ankle Int. 2007, 28, 746–747. [Google Scholar] [CrossRef]
- West, T.A.; Carpenter, D.M.; DeTommaso, J.; Patel, S.B. Crossed Screw Fixation Versus Dorsal Plating for First Metatarsophalangeal Joint Arthrodesis: A Retrospective Cohort Study. J. Foot Ankle Surg. 2022, 61, 32–36. [Google Scholar]
- Akdemir, M.; Turan, A.C.; Kilic, A.I. Retrospective comparison of two different fixation methods for first metatarsophalangeal joint arthrodesis. J. Basic Clin. Health Sci. 2023, 7, 245. [Google Scholar]
- Kumar, S.; Pradhan, R.; Rosenfeld, P.F. First Metatarsophalangeal Arthrodesis using a Dorsal Plate and a Compression Screw. Foot Ankle Int. 2010, 31, 797–801. [Google Scholar] [CrossRef] [PubMed]
- Chraim, M.; Bock, P.; Alrabai, H.M.; Trnka, H.J. Long-term outcome of first metatarsophalangeal joint fusion in the treatment of severe hallux rigidus. Int. Orthop. 2016, 40, 2401–2408. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.L.; Kay, D.B.; Sabatta, J. First Metatarsophalangeal Joint Arthrodesis: An Evaluation of Hardware Failure. Foot Ankle Int. 2005, 26, 593–596. [Google Scholar] [CrossRef] [PubMed]
First Author (Year) | Model (Cadaver, Computer, etc.) | Number of Constructs (n) | Primary Fixation Method |
---|---|---|---|
Schafer (2022) [30] | Cadaver | 8 | Shape Memory Staples |
Foote (2012) [26] | Synthetic Bone | 24 | Multiple |
Aiyer (2015) [27] | Cadaver | 24 | Dorsal Plate |
Curtis (1993) [32] | Cadaver | 20 | Multiple |
Molloy (2003) [37] | Cadaver | 10 | Screw |
Rongstad (1994) [33] | Cadaver | 36 | Multiple |
Buranosky (2001) [31] | Cadaver | 24 | Multiple |
Politi (2003) [24] | Synthetic Bone | 40 | Multiple |
Hunt (2012) [11] | Cadaver | 18 | Locking Plate |
Campbell (2017) [23] | Cadaver + Synthetic Bone | 5 | Multiple |
Lucas (2014) [25] | Cadaver | 22 | Screw |
Harris (2017) [28] | Synthetic Bone | 20 | Multiple |
Willmott (2018) [29] | Porcine Cadaver | 32 | Multiple |
Witkowski (2021) [13] | Synthetic Bone | 2 | Plate |
Faraj (2007) [35] | Synthetic Bone | 2 | Multiple |
Bartak (2020) [19] | Synthetic Bone | 4 | N/A |
Fuld (2019) [22] | Cadaver | 11 | Multiple |
Mandell (2018) [1] | Cadaver | 24 | Plate |
Neufeld (2002) [36] | Cadaver | 42 | Multiple |
Sykes (1986) [34] | Cadaver | 15 | Multiple |
First Author (Year) | Stiffness | Load to Failure |
---|---|---|
Curtis (1993) [32] | Group 1: Conical Excision Interfragmentary Screw: 0.69 ± 0.32 N/mm (0.24–1.0) * Dorsal Plate: 0.17 ± 0.08 N/mm (0.05–0.26) * Planar Excision Interfragmentary Screw: 0.28 ± 0.11 N/mm (0.15–0.42) * Group 2: Conical Excision Interfragmentary Screw: 0.28 ± 0.18 N/mm (0.12–0.58) K Wire: 0.28 ± 0.16 N/mm (0.08–0.50) * = p < 0.03 | Group 1: Conical Excision Interfragmentary Screw: 91.2 ± 28.2 (575–23) * Dorsal Plate: 20.6 ± 4.6 (12.4–24) * Planar Excision Interfragmentary Screw: 28.2 ± 3.3 (24.2–31) * Group 2: Conical Excision Interfragmentary Screw: 79.4 ± 25.9 (41.3–110) * K Wire: 40.2 ± 14.3 (19–57.1) * * = p < 0.01, All measurements N−1 |
Buranosky (2001) [31] | MT1 Displacement (0–1 mm): Dorsal Plate/Screws: 121 ± 56 N/mm * Crossed Screws = 72 ± 33 N/mm * MT1 Displacement (1–2 mm): Dorsal Plate/Screws: 37 ± 10 N/mm Crossed Screws: 31 ± 16 N/mm * = p < 0.01 | Dorsal Plate Lag Screw: 180 ± 58 * Crossed Screw: 130 ± 64 * * = p < 0.002 |
Politi (2003) [24] | N/A | Mean Moment (N-mm): Dorsal Plate Lag Screw: 4958.5 * Planar Excision Interfragmentary Screw: 3030.2 * Conical Excision Interfragmentary Screw: 1870.2 * Dorsal Plate: 397.5 K wire: 304.5 * = All constructs significantly differ from each other except for Dorsal Plate and K-wire |
Campbell (2017) [23] | Synthetic Bone Model: Non-Locking Plate: 15.6 ± 1.7 N/mm * Locking Plate: 18.1 ± 2.3 N/mm * Dorsal Plate Lag Screw: 373.4 ± 76.3 N/mm * Crossed Screws: 94.7 ± 12.5 N/mm * Cadaveric Model: Dorsal Plate Lag Screw = 122.1 ± 5.9 N/mm Crossed Screws = 152.4 ± 14.2 N/mm * = All constructs significantly differ from each other (p< 0.008) except for Non-Locking and Locking Plates | Synthetic Bone Model: Dorsal Plate Lag Screw: 130.9 ± 19.4 N Crossed Screws: 101 ± 17.8 N Cadaveric Model: Dorsal Plate Lag Screw: 154.1 ± 40.7 N Crossed Screws: 93.9 ± 14.4 N |
Harris (2017) [28] | Conical Excision Dorsal Plate Lag Screw: 19.30 ± 1.43 N/mm Planar Excision Dorsal Plate Lag Screw: 19.08 ± 2.89 N/mm Crossed Screws: 9.32 ± 2.17 N/mm * Dorsal Plate: 3.76 ± 0.55 N/mm * * = significantly weaker than both dorsal plating methods p < 0.001 | Conical Excision Dorsal Plate Lag Screw: 364.4 ± 25.9 N Planar Excision Dorsal Plate Lag Screw: 360.6 ± 31.5 N Crossed Screws: 382.4 ± 84.6 N Dorsal Plate: 211.5 ± 21.4 N * * = p < 0.001, significantly lower than all other groups |
Fuld (2019) [22] | Dorsal Plate Lag Screw: 31.6 ± 25.09 N/mm * Fully Threaded Compression Screw: 51.7 ± 27.21 N/mm * * p = 0.0045 | Dorsal Plate Lag Screw: 198.6 ± 33.68 N Fully Threaded Compression Screw: 290.31± 95.69 N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balu, A.R.; Baumann, A.N.; Tsang, T.; Talaski, G.M.; Anastasio, A.T.; Walley, K.C.; Adams, S.B. Evaluating the Biomechanical Integrity of Various Constructs Utilized for First Metatarsophalangeal Joint Arthrodesis: A Systematic Review. Materials 2023, 16, 6562. https://doi.org/10.3390/ma16196562
Balu AR, Baumann AN, Tsang T, Talaski GM, Anastasio AT, Walley KC, Adams SB. Evaluating the Biomechanical Integrity of Various Constructs Utilized for First Metatarsophalangeal Joint Arthrodesis: A Systematic Review. Materials. 2023; 16(19):6562. https://doi.org/10.3390/ma16196562
Chicago/Turabian StyleBalu, Abhinav R., Anthony N. Baumann, Terence Tsang, Grayson M. Talaski, Albert T. Anastasio, Kempland C. Walley, and Samuel B. Adams. 2023. "Evaluating the Biomechanical Integrity of Various Constructs Utilized for First Metatarsophalangeal Joint Arthrodesis: A Systematic Review" Materials 16, no. 19: 6562. https://doi.org/10.3390/ma16196562
APA StyleBalu, A. R., Baumann, A. N., Tsang, T., Talaski, G. M., Anastasio, A. T., Walley, K. C., & Adams, S. B. (2023). Evaluating the Biomechanical Integrity of Various Constructs Utilized for First Metatarsophalangeal Joint Arthrodesis: A Systematic Review. Materials, 16(19), 6562. https://doi.org/10.3390/ma16196562