Preparation Optimization of Enhanced Poplar Wood by Organic–Inorganic Hybrid Treatment via Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparations of GMMT
2.3. Treatment of Poplar Wood Samples
2.4. RSM Experimental Design
2.5. Characterizations of Samples
2.6. Physical and Mechanical Properties
3. Results and Discussion
3.1. Analysis of Variance (ANOVA) and Model Fitting
3.2. Physical and Mechanical Properties
3.3. Analysis of the Reaction Mechanism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fabiani, G.; Fedi, M.; Giuliani, M.R.; Giulio, G.D.; Togni, M. The discovery of “Marouflage” on decorated structural timber in a villa of the XV Century. Int. J. Conserv. Sci. 2019, 10, 59–68. [Google Scholar]
- Yang, N.; Li, P.f.; Law, S.; Yang, Q. Experimental Research on Mechanical Properties of Timber in Ancient Tibetan Building. J. Mater. Civ. Eng. 2012, 24, 635–643. [Google Scholar] [CrossRef]
- Kolyaganova, O.; Klimov, V.V.; Bryuzgin, E.V.; Le, M.D.; Kharlamov, V.O.; Bryuzgina, E.B.; Navrotsky, A.V.; Novakov, I.A. Modification of wood with copolymers based on glycidyl methacrylate and alkyl methacrylates for imparting superhydrophobic properties. J. Appl. Polym. Sci. 2022, 139, 51636. [Google Scholar] [CrossRef]
- Popescu, C.M.; Pfriem, A. Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire Mater. 2020, 44, 100–111. [Google Scholar] [CrossRef]
- Tajvidi, M.; Falk, R.H.; Hermanson, J.C. Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J. Appl. Polym. Sci. 2006, 101, 4341–4349. [Google Scholar] [CrossRef]
- Prakash, G.K.; Mahadevan, K.M. Enhancing the properties of wood through chemical modification with palmitoyl chloride. Appl. Surf. Sci. 2008, 254, 1751–1756. [Google Scholar] [CrossRef]
- Wang, S.; Liu, C.; Liu, G.; Zhang, M.; Li, J.; Wang, C. Fabrication of superhydrophobic wood surface by a sol–gel process. Appl. Surf. Sci. 2011, 258, 806–810. [Google Scholar] [CrossRef]
- Fu, Y.; Li, G.; Yu, H.; Liu, Y. Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA. Appl. Surf. Sci. 2012, 258, 2529–2533. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Song, S.; Xu, K.; Lyu, J.; Li, X. Curing characteristics of low molecular weight melamine-urea–formaldehyde (MUF) resin-impregnated poplar wood. Constr. Build. Mater. 2022, 325, 126814. [Google Scholar] [CrossRef]
- Wang, J.; Yao, Y.; Huang, Y.; Ma, Y.; Xi, J.; Wang, X.; Li, H.; Yang, Z. Effects of the combination of compression and impregnation with phenolic resin on the dimensional stability in the multiscale wood structure of Chinese fir. Constr. Build. Mater. 2022, 327, 126960. [Google Scholar] [CrossRef]
- Emmerich, L.; Bollmus, S.; Militz, H. Wood modification with DMDHEU (1.3-dimethylol-4.5-dihydroxyethyleneurea)–State of the art, recent research activities and future perspectives. Wood Mater. Sci. Eng. 2017, 14, 1–16. [Google Scholar] [CrossRef]
- Kumar, A.; Ryparová, P.; Hosseinpourpia, R.; Adamopoulos, S.; Prošek, Z.; Žigon, J.; Petrič, M. Hydrophobicity and resistance against microorganisms of heat and chemically crosslinked poly(vinyl alcohol) nanofibrous membranes. Chem. Eng. J. 2019, 360, 788–796. [Google Scholar] [CrossRef]
- Rabe, S.; Klack, P.; Bahr, H.; Schartel, B. Assessing the fire behavior of woods modified by N-methylol crosslinking, thermal treatment, and acetylation. Fire Mater. 2020, 44, 530–539. [Google Scholar] [CrossRef]
- De Vetter, L.; Pilgård, A.; Treu, A.; Westin, M.; Van Acker, J. Combined evaluation of durability and ecotoxicity: A case study on furfurylated wood. Wood Mater. Sci. Eng. 2009, 4, 30–36. [Google Scholar] [CrossRef]
- Rahman, M.R.; Hamdan, S.; Lai, J.H.; Jawaid, M.; Yusof, F.A. Physico-mechanical, thermal and morphological properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (WPNCs). Heliyon 2017, 3, e00342. [Google Scholar] [CrossRef]
- Liu, M.; Yi, Q.; Li, J.; Ma, E.; Liu, R. Synergistic effect of montmorillonite/lignin on improvement of water resistance and dimensional stability of Populus cathayana. Ind. Crop. Prod. 2019, 141, 111747. [Google Scholar] [CrossRef]
- Rodrigues, J.S.; de Freitas, A.M.; Maciel, C.C.; Mendes, S.F.; Diment, D.; Balakshin, M.; Botaro, V.R. Selection of kraft lignin fractions as a partial substitute for phenol in synthesis of phenolic resins: Structure-property correlation. Ind. Crop. Prod. 2023, 191, 115948. [Google Scholar] [CrossRef]
- Chen, C.; Berglund, L.; Burgert, I.; Hu, L. Wood nanomaterials and nanotechnologies. Adv. Mater. 2021, 33, 2006207. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, L.; Gu, J.; Tan, H.; Zhu, L. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohyd. Polym. 2015, 115, 32–37. [Google Scholar] [CrossRef]
- Randall, J.D.; Eyckens, D.J.; Servinis, L.; Stojcevski, F.; O’Dell, L.A.; Gengenbach, T.R.; Demir, B.; Walsh, T.R.; Henderson, L.C. Designing carbon fiber composite interfaces using a ‘graft-to’ approach: Surface grafting density versus interphase penetration. Carbon 2019, 146, 88–96. [Google Scholar] [CrossRef]
- Varadwaj, G.B.B.; Parida, K.; Nyamori, V.O. Transforming inorganic layered montmorillonite into inorganic–organic hybrid materials for various applications: A brief overview. Inorg. Chem. Front. 2016, 3, 1100–1111. [Google Scholar] [CrossRef]
- Manyangadze, M.; Chikuruwo, N.H.M.; Narsaiah, T.B.; Chakra, C.S.; Radhakumari, M.; Danha, G. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. S. Afr. J. Chem. Eng. 2020, 31, 25–32. [Google Scholar] [CrossRef]
- ISO 5660-1 Standard; Reaction-to-Fire Tests—Heat Release, Smoke Production and Mass Loss Rate—Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Production Rate (Dynamic Measurement). International Organization for Standardization: Geneva, Switzerland, 2015.
- GB/T 1927.2-2021; Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens—Part 2: Sampling methods and General Requirements. National Standard of the People’s Republic of China: Beijing, China, 2021.
- GB/T 1927.5-2021; Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens—Part 5: Determination of Density. National Standard of the People’s Republic of China: Beijing, China, 2021.
- GBT1927.10-2021; Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens—Part 10: Determination of Modulus of Elasticity in Bending. National Standard of the People’s Republic of China: Beijing, China, 2021.
- GB/T 1927.11-2021; Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens—Part 11: Determination of Ultimate Stress in Compression Parallel to Grain. National Standard of the People’s Republic of China: Beijing, China, 2021.
- GB/T 1927.7-2021; Test Methods for Physical and Mechanical Properties of Small Clear Wood Specimens—Part 7: Determination of Water Absorption. National Standard of the People’s Republic of China: Beijing, China, 2021.
- Can, A. Preparation, characterization, and thermal properties of microencapsulated palmitic acid with ethyl cellulose shell as phase change material impregnated wood. J. Energy Storage 2023, 66, 107382. [Google Scholar] [CrossRef]
- Sun, T.; Zhuo, Q.; Chen, Y.; Wu, Z. Synthesis of boehmite and its effect on flame retardancy of epoxy resin. High Perform. Polym. 2015, 27, 100–104. [Google Scholar] [CrossRef]
- Li, W.; Wang, G.; Sui, W.; Xu, T.; Li, Z.; Parvez, A.M.; Si, C. Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 2022, 196, 819–827. [Google Scholar] [CrossRef]
- Ribca, I.; Sochor, B.; Betker, M.; Roth, S.V.; Lawoko, M.; Sevastyanova, O.; Meier, M.A.R.; Johansson, M. Impact of lignin source on the performance of thermoset resins. Eur. Polym. J. 2023, 194, 112141. [Google Scholar] [CrossRef]
- Hazarika, A.; Maji, T.K. Effect of different crosslinkers on properties of melamine formaldehyde-furfuryl alcohol copolymer/montmorillonite impregnated softwood (Ficus hispida). Polym. Eng. Sci. 2013, 53, 1394–1404. [Google Scholar] [CrossRef]
Variables | Levels | ||
---|---|---|---|
LR (A, wt%) | 25 | 30 | 35 |
GMMT (B, wt%) | 1.5 | 2 | 2.5 |
Impregnation pressure (C, MPa) | 0.9 | 1.1 | 1.3 |
Impregnation time (D, min) | 80 | 90 | 100 |
Number | LR (A, wt%) | GMMT (B, wt%) | Impregnation Pressure (C, MPa) | Impregnation Time (D, min) | WPG (Y, %) |
---|---|---|---|---|---|
1 | 35 | 2 | 1.3 | 90 | 29.5 |
2 | 30 | 2 | 1.1 | 90 | 35.8 |
3 | 30 | 1.5 | 1.1 | 100 | 31.8 |
4 | 30 | 2 | 1.3 | 100 | 35.7 |
5 | 25 | 2 | 1.1 | 80 | 31.7 |
6 | 30 | 2.5 | 1.1 | 100 | 33.2 |
7 | 30 | 2 | 0.9 | 100 | 34.1 |
8 | 35 | 2 | 1.1 | 100 | 35.4 |
9 | 30 | 2 | 1.1 | 90 | 29.1 |
10 | 30 | 2 | 1.1 | 90 | 35.5 |
11 | 30 | 1.5 | 0.9 | 90 | 31.2 |
12 | 30 | 2 | 1.3 | 80 | 36.1 |
13 | 30 | 2.5 | 1.1 | 80 | 31.5 |
14 | 35 | 1.5 | 1.1 | 90 | 32.8 |
15 | 25 | 2 | 0.9 | 90 | 33.0 |
16 | 30 | 2 | 1.1 | 90 | 35.7 |
17 | 25 | 2 | 1.1 | 100 | 26.3 |
18 | 35 | 2 | 1.1 | 80 | 35.1 |
19 | 30 | 1.5 | 1.3 | 90 | 31.7 |
20 | 35 | 2.5 | 1.1 | 90 | 36.0 |
21 | 30 | 2.5 | 1.3 | 90 | 31.6 |
22 | 30 | 2 | 1.1 | 90 | 33.5 |
23 | 30 | 1.5 | 1.1 | 80 | 34.3 |
24 | 25 | 2.5 | 1.1 | 90 | 35.8 |
25 | 35 | 2 | 0.9 | 90 | 33.6 |
26 | 30 | 2 | 0.9 | 80 | 33.7 |
27 | 30 | 2.5 | 0.9 | 90 | 33.6 |
28 | 25 | 2 | 1.3 | 90 | 33.7 |
29 | 25 | 1.5 | 1.1 | 90 | 34.5 |
Source | Sum of Square | Df | Mean Square | F-Value | p-Value | Significance * |
---|---|---|---|---|---|---|
Model | 149.64 | 14 | 10.69 | 30.20 | <0.0001 | ** |
A | 99.76 | 1 | 99.76 | 281.85 | <0.0001 | ** |
B | 7.68 | 1 | 7.68 | 21.70 | 0.0004 | ** |
C | 15.19 | 1 | 15.19 | 42.91 | <0.0001 | ** |
D | 12.61 | 1 | 12.61 | 35.62 | <0.0001 | ** |
AB | 1.44 | 1 | 1.44 | 4.07 | 0.0633 | |
AC | 5.06 | 1 | 5.06 | 14.30 | 0.0020 | ** |
AD | 0.56 | 1 | 0.56 | 1.59 | 0.2281 | |
BC | 0.49 | 1 | 0.49 | 1.38 | 0.2590 | |
BD | 0.040 | 1 | 0.040 | 0.11 | 0.7417 | |
CD | 1.000 × 10−2 | 1 | 1.000 × 10−2 | 0.028 | 0.8689 | |
A2 | 4.89 | 1 | 4.89 | 13.82 | 0.0023 | ** |
B2 | 6.505 × 10−3 | 1 | 6.505 × 10−3 | 0.018 | 0.8941 | |
C2 | 1.83 | 1 | 1.83 | 5.16 | 0.0394 | * |
D2 | 0.058 | 1 | 0.058 | 0.16 | 0.6930 | |
Residue | 4.96 | 14 | 0.35 | |||
Lack of fit | 4.37 | 10 | 0.44 | 2.97 | 0.1527 | |
R2 | 0.9679 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, X.; Deng, L.; Li, X.; Li, X. Preparation Optimization of Enhanced Poplar Wood by Organic–Inorganic Hybrid Treatment via Response Surface Methodology. Materials 2023, 16, 6718. https://doi.org/10.3390/ma16206718
Wang Y, He X, Deng L, Li X, Li X. Preparation Optimization of Enhanced Poplar Wood by Organic–Inorganic Hybrid Treatment via Response Surface Methodology. Materials. 2023; 16(20):6718. https://doi.org/10.3390/ma16206718
Chicago/Turabian StyleWang, Yong, Xia He, Layun Deng, Xiazhen Li, and Xianjun Li. 2023. "Preparation Optimization of Enhanced Poplar Wood by Organic–Inorganic Hybrid Treatment via Response Surface Methodology" Materials 16, no. 20: 6718. https://doi.org/10.3390/ma16206718
APA StyleWang, Y., He, X., Deng, L., Li, X., & Li, X. (2023). Preparation Optimization of Enhanced Poplar Wood by Organic–Inorganic Hybrid Treatment via Response Surface Methodology. Materials, 16(20), 6718. https://doi.org/10.3390/ma16206718