Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plastics Europe. Plastics—The Facts 2022; Plastics Europe: Brussells, Belgium, 2023. [Google Scholar]
- Tran, M.H.; Lee, E.Y. Production of Polyols and Polyurethane from Biomass: A Review. Environ. Chem. Lett. 2023, 21, 2199–2223. [Google Scholar] [CrossRef]
- Olszewski, A.; Kosmela, P.; Piszczyk, Ł. Synthesis and Characterization of Biopolyols through Biomass Liquefaction of Wood Shavings and Their Application in the Preparation of Polyurethane Wood Composites. Eur. J. Wood Wood Prod. 2022, 80, 57–74. [Google Scholar] [CrossRef]
- Abdel Hakim, A.A.; Nassar, M.; Emam, A.; Sultan, M. Preparation and Characterization of Rigid Polyurethane Foam Prepared from Sugar-Cane Bagasse Polyol. Mater. Chem. Phys. 2011, 129, 301–307. [Google Scholar] [CrossRef]
- Kaikade, D.S.; Sabnis, A.S. Polyurethane Foams from Vegetable Oil-Based Polyols: A Review. Polym. Bull. 2023, 80, 2239–2261. [Google Scholar] [CrossRef] [PubMed]
- Alagi, P.; Hong, S.C. Vegetable Oil-Based Polyols for Sustainable Polyurethanes. Macromol. Res. 2015, 23, 1079–1086. [Google Scholar] [CrossRef]
- Cifarelli, A.; Boggioni, L.; Vignali, A.; Tritto, I.; Bertini, F.; Losio, S. Flexible Polyurethane Foams from Epoxidized Vegetable Oils and a Bio-based Diisocyanate. Polymers 2021, 13, 612. [Google Scholar] [CrossRef]
- Nohra, B.; Candy, L.; Blanco, J.F.; Guerin, C.; Raoul, Y.; Mouloungui, Z. From Petrochemical Polyurethanes to Biobased Polyhydroxyurethanes. Macromolecules 2013, 46, 3771–3792. [Google Scholar] [CrossRef]
- Arniza, M.Z.; Hoong, S.S.; Idris, Z.; Yeong, S.K.; Hassan, H.A.; Din, A.K.; Choo, Y.M. Synthesis of Transesterified Palm Olein-Based Polyol and Rigid Polyurethanes from This Polyol. JAOCS J. Am. Oil Chem. Soc. 2015, 92, 243–255. [Google Scholar] [CrossRef]
- Kirpluks, M.; Kalnbunde, D.; Benes, H.; Cabulis, U. Natural Oil Based Highly Functional Polyols as Feedstock for Rigid Polyurethane Foam Thermal Insulation. Ind. Crops Prod. 2018, 122, 627–636. [Google Scholar] [CrossRef]
- Stirna, U.; Fridrihsone, A.; Lazdiņa, B.; Misāne, M.; Vilsone, D. Biobased Polyurethanes from Rapeseed Oil Polyols: Structure, Mechanical and Thermal Properties. J. Polym. Environ. 2013, 21, 952–962. [Google Scholar] [CrossRef]
- Asare, M.A.; Kote, P.; Chaudhary, S.; de Souza, F.M.; Gupta, R.K. Sunflower Oil as a Renewable Resource for Polyurethane Foams: Effects of Flame-Retardants. Polymers 2022, 14, 5282. [Google Scholar] [CrossRef] [PubMed]
- Ji, D.; Fang, Z.; Wan, Z.D.; Chen, H.C.; He, W.; Li, X.L.; Guo, K. Rigid Polyurethane Foam Based on Modified Soybean Oil. Adv. Mater. Res. 2013, 724–725, 1681–1684. [Google Scholar] [CrossRef]
- Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of Edible Oil vs. Non-Edible Oil vs. Waste Edible Oil as Biodiesel Feedstock. Energy 2008, 33, 1646–1653. [Google Scholar] [CrossRef]
- Zhang, Y.; Dubé, M.A.; McLean, D.D.; Kates, M. Biodiesel Production from Waste Cooking Oil: 1. Process Design and Technological Assessment. Bioresour. Technol. 2003, 89, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Marson, A.; Masiero, M.; Modesti, M.; Scipioni, A.; Manzardo, A. Life Cycle Assessment of Polyurethane Foams from Polyols Obtained through Chemical Recycling. ACS Omega 2021, 6, 1718–1724. [Google Scholar] [CrossRef] [PubMed]
- Paciorek-Sadowska, J.; Borowicz, M.; Isbrandt, M. New Poly(Lactide-Urethane-Isocyanurate) Foams Based on Bio-PolylactideWaste. Polymers 2019, 11, 481. [Google Scholar] [CrossRef]
- Dîrloman, F.M.; Toader, G.; Rotariu, T.; Țigănescu, T.V.; Ginghina, R.E.; Petre, R.; Alexe, F.; Ungureanu, M.I.; Rusen, E.; Diacon, A.; et al. Novel Polyurethanes Based on Recycled Polyethylene Terephthalate: Synthesis, Characterization, and Formulation of Binders for Environmentally Responsible Rocket Propellants. Polymers 2021, 13, 3828. [Google Scholar] [CrossRef]
- Tran, T.K.N.; Pilard, J.F.; Pasetto, P. Recycling Waste Tires: Generation of Functional Oligomers and Description of Their Use in the Synthesis of Polyurethane Foams. J. Appl. Polym. Sci. 2015, 132, 1–11. [Google Scholar] [CrossRef]
- Fierascu, R.C.; Sieniawska, E.; Ortan, A.; Fierascu, I.; Xiao, J. Fruits By-Products – A Source of Valuable Active Principles. A Short Review. Front. Bioeng. Biotechnol. 2020, 8, 319. [Google Scholar] [CrossRef]
- Nowshehri, J.A.; Bhat, Z.A.; Shah, M.Y. Blessings in Disguise: Bio-Functional Benefits of Grape Seed Extracts. Food Res. Int. 2015, 77, 333–348. [Google Scholar] [CrossRef]
- Jithender, B.; Rathod, P.J. Nutritional and Anti-Nutritional Factors Present in Oil Seeds: An Overview Phytochemical Characterization of Algal Species from Coastal Belt of Okha Region View Project. Int. J. Chem. Stud. 2019, 7, 1159–1165. [Google Scholar]
- De Haro, J.C.; Rodríguez, J.F.; Carmona, M.; Pérez, Á.; Ángel, P. Revalorization of Grape Seed Oil for Innovative Non-Food Applications. In Grapes and Wines—Advances in Production, Processing, Analysis and Valorization; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef]
- Vijayan, J.G.; Chandrashekar, A.; AG, J.; Prabhu, T.N.; Kalappa, P. Polyurethane and Its Composites Derived from Bio-Sources: Synthesis, Characterization and Adsorption Studies. Polym. Polym. Compos. 2022, 30, 09673911221110347. [Google Scholar] [CrossRef]
- Clark, A.J.; Ross, A.H.; Bon, S.A.F. Synthesis and Properties of Polyesters from Waste Grapeseed Oil: Comparison with Soybean and Rapeseed Oils. J. Polym. Environ. 2017, 25, 1–10. [Google Scholar] [CrossRef]
- Malewska, E.; Polaczek, K.; Kurańska, M. Impact of Various Catalysts on Transesterification of Used Cooking Oil and Foaming Processes of Polyurethane Systems. Materials 2022, 15, 7807. [Google Scholar] [CrossRef] [PubMed]
- Schuchardt, U.; Sercheli, R.; Matheus, R. Transesterification of Vegetable Oils: A Review General Aspects of Transesterification Transesterification of Vegetable Oils Acid-Catalyzed Processes Base-Catalyzed Processes. J. Braz. Chem. Soc. 1998, 9, 199–210. [Google Scholar]
- Yakushin, V.; Stirna, U.; Bikovens, O.; Misane, M.; Sevastyanova, I.; Vilsone, D. Synthesis and Characterization of Novel Polyurethanes Based on Tall Oil. Medziagotyra 2013, 19, 390–396. [Google Scholar] [CrossRef]
- Kurańska, M.; Leszczyńska, M.; Malewska, E.; Prociak, A.; Ryszkowska, J. Implementation of Circular Economy Principles in the Synthesis of Polyurethane Foams. Polymers 2020, 12, 2068. [Google Scholar] [CrossRef]
- Prociak, A.; Kurańska, M.; Cabulis, U.; Ryszkowska, J.; Leszczyńska, M.; Uram, K.; Kirpluks, M. Effect of Bio-Polyols with Different Chemical Structures on Foaming of Polyurethane Systems and Foam Properties. Ind. Crops Prod. 2018, 120, 262–270. [Google Scholar] [CrossRef]
- Zemła, M.; Prociak, A.; Michałowski, S.; Cabulis, U.; Kirpluks, M.; Simakovs, K. Thermal Insulating Rigid Polyurethane Foams with Bio-Polyol from Rapeseed Oil Modified by Phosphorus Additive and Reactive Flame Retardants. Int. J. Mol. Sci. 2022, 23, 12386. [Google Scholar] [CrossRef]
- Noureddine, B.; Zitouni, S.; Achraf, B.; Houssém, C.; Jannick, D.; Jean-François, G.; Noureddine, B.; Zitouni, S.; Achraf, B.; Houssém, C.; et al. Development and Characterization of Tailored Polyurethane Foams for Shock Absorption to Cite This Version: HAL Id: Hal-04143390 Applied Sciences Development and Characterization of Tailored Polyurethane Foams for Shock Absorption. Appl. Sci. 2022, 12, 2206. [Google Scholar] [CrossRef]
- Stefano, F.; Alice, L.; Georgios, K.; Dmytro, L.; Gianluca, S.; Europe, P. Closed and Open-Cell Spray Polyurethane Foam. Energy Procedia 2013, 441–446. [Google Scholar]
- Prociak, A.; Ryszkowska, J.; Rokicki, G. Materiały Poliuretanowe; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2014; Volume 1, ISBN 9788301187842. [Google Scholar]
Biopolyol | Biofoam | ||||
---|---|---|---|---|---|
PUR_W | PUR_C | PUR_P | PUR_B | PUR_G | |
Mass of the Component, g | |||||
BP_W | 75 | 0 | 0 | 0 | 0 |
BP_C | 0 | 75 | 0 | 0 | 0 |
BP_P | 0 | 0 | 75 | 0 | 0 |
BP_B | 0 | 0 | 0 | 75 | 0 |
BP_G | 0 | 0 | 0 | 0 | 75 |
Surfactant | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Water | 3.0 | 3.0 | 3.0 | 3.0 | 3.0 |
Isocyanate | 148.5 | 148.1 | 148.5 | 151.9 | 147.3 |
Oil | Source of Oil | Ival, gI2/100 g | Mn, g/mol | Mw, g/mol | Ƞ, mPa·s |
---|---|---|---|---|---|
OIL_W | watermelon | 118 | 865 | 871 | 53 |
OIL_C | cherry | 137 | 859 | 865 | 55 |
OIL_P | pomegranate | 101 | 881 | 886 | 200 |
OIL_B | blackcurrant | 139 | 822 | 830 | 72 |
OIL_G | grape | 133 | 859 | 865 | 46 |
Biopolyol | Source of Oil | OHval, mgKOH/g | Mn, g/mol | Mw, g/mol | Ƞ, mPa·s |
---|---|---|---|---|---|
BP_W | watermelon | 361 | 279 | 471 | 165 |
BP_C | cherry | 359 | 289 | 497 | 169 |
BP_P | pomegranate | 361 | 335 | 558 | 413 |
BP_B | blackcurrant | 381 | 276 | 473 | 160 |
BP_G | grape | 355 | 281 | 484 | 157 |
PUR_W | PUR_C | PUR_P | PUR_B | PUR_G | |
---|---|---|---|---|---|
ts, s | <11 | <11 | <11 | <11 | <11 |
tg, s | 21 | 22 | 20 | 20 | 25 |
td, s | 80 | 80 | 79 | 70 | 81 |
Tmax, °C | 172 | 170 | 170 | 175 | 172 |
t Tmax, s | 182 | 205 | 222 | 224 | 196 |
Foam | Brittleness, % | Water Absorption, % |
---|---|---|
PUR_W | 5.3 ± 0.42 | 1.4 ± 0.31 |
PUR_C | 7.2 ± 0.76 | 1.6 ± 0.35 |
PUR_P | 5.5 ± 1.71 | 1.0 ± 0.15 |
PUR_B | 10.2 ± 0.42 | 1.9 ± 0.27 |
PUR_G | 4.1 ± 0.40 | 1.4 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malewska, E.; Kurańska, M.; Tenczyńska, M.; Prociak, A. Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials. Materials 2024, 17, 158. https://doi.org/10.3390/ma17010158
Malewska E, Kurańska M, Tenczyńska M, Prociak A. Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials. Materials. 2024; 17(1):158. https://doi.org/10.3390/ma17010158
Chicago/Turabian StyleMalewska, Elżbieta, Maria Kurańska, Maria Tenczyńska, and Aleksander Prociak. 2024. "Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials" Materials 17, no. 1: 158. https://doi.org/10.3390/ma17010158
APA StyleMalewska, E., Kurańska, M., Tenczyńska, M., & Prociak, A. (2024). Application of Modified Seed Oils of Selected Fruits in the Synthesis of Polyurethane Thermal Insulating Materials. Materials, 17(1), 158. https://doi.org/10.3390/ma17010158