Novel Remineralizing and Antibiofilm Low-Shrinkage-Stress Nanocomposites to Inhibit Salivary Biofilms and Protect Tooth Structures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesizing a Nanocomposite Comprising Dimethylaminododecyl Methacrylate, Amorphous Calcium Phosphate, and Calcium Fluoride Nanoparticles
- Heliomolar resin composite (designated as “Commercial Control Composite”);
- Experimental resin composite: 35% UV + 65% glass (designated as “Experimental Control Composite”);
- 32% UV + 3% DMADDM + 20% NACP + 45% glass (designated as “NACP+DMADDM Nanocomposite”);
- 32% UV + 3% DMADDM + 20% nCaF2 + 45% glass (designated as “nCaF2+DMADDM Nanocomposite”);
- 32% UV + 3% DMADDM + 10% NACP + 10% nCaF2 + 45% glass (designated as “NACP+nCaF2+DMADDM Nanocomposite”).
2.2. Samples Preparation for Biofilm Testing
2.3. Human Saliva-Based Microcosm Biofilm Model
2.4. Visualization of Live/Dead Staining of Biofilms
2.5. Biofilm Colony Forming Units (CFU) Count
- Tryptic soy blood agar (TSA) supplemented with defibrinated sheeps blood was used to assess the biofilm growth of total microorganisms.
- Mitis salivarius agar (MSA) was employed to evaluate the biofilm growth of total Streptococci.
- MSA with 0.2 units of bacitracin per mL and potassium tellurite (Millipore Sigma) (MSB) was used to assess the biofilm growth of Mutans streptococci.
2.6. Metabolic Activity Exhibited by Biofilms
2.7. Production of Lactic Acid by Biofilms
2.8. Assessment of the Release of Calcium, Phosphate, and Fluoride Ions
Statistical Analysis
3. Results
3.1. Live/Dead Staining of Salivary Biofilms
3.2. Biofilm Colony-Forming Units Counts
3.3. MTT Assay of Metabolic Activity of Salivary Biofilms
3.4. Lactic Acid Production by Salivary Biofilms
3.5. Ions Release for Calcium, Phosphate, and Fluoride
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eltahlah, D.; Lynch, C.D.; Chadwick, B.L.; Blum, I.R.; Wilson, N.H.F. An Update on the Reasons for Placement and Replacement of Direct Restorations. J. Dent. 2018, 72, 1–7. [Google Scholar] [CrossRef]
- Elgezawi, M.; Haridy, R.; Abdalla, M.A.; Heck, K.; Draenert, M.; Kaisarly, D. Current Strategies to Control Recurrent and Residual Caries with Resin Composite Restorations: Operator- and Material-Related Factors. J. Clin. Med. 2022, 11, 6591. [Google Scholar] [CrossRef]
- Nedeljkovic, I.; Teughels, W.; De Munck, J.; Van Meerbeek, B.; Van Landuyt, K.L. Is Secondary Caries with Composites a Material-Based Problem? Dent. Mater. 2015, 31, e247–e277. [Google Scholar] [CrossRef]
- Lemos, J.; Palmer, S.; Zeng, L.; Wen, Z.; Kajfasz, J.; Freires, I.; Abranches, J.; Brady, L. The Biology of Streptococcus Mutans. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Davidovich, E.; Grender, J.; Zini, A. Factors Associated with Dental Plaque, Gingivitis, and Caries in a Pediatric Population: A Records-Based Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 8595. [Google Scholar] [CrossRef]
- Loesche, W.J. Role of Streptococcus Mutans in Human Dental Decay. Microbiol. Rev. 1986, 50, 353–380. [Google Scholar] [CrossRef]
- Zhang, S. Dental Caries and Vaccination Strategy against the Major Cariogenic Pathogen, Streptococcus Mutans. Curr. Pharm. Biotechnol. 2013, 14, 960–966. [Google Scholar] [CrossRef]
- Lemos, J.A.; Burne, R.A. A Model of Efficiency: Stress Tolerance by Streptococcus Mutans. Microbiology 2008, 154, 3247–3255. [Google Scholar] [CrossRef]
- Costa Oliveira, B.E.; Ricomini Filho, A.P.; Burne, R.A.; Zeng, L. The Route of Sucrose Utilization by Streptococcus Mutans Affects Intracellular Polysaccharide Metabolism. Front. Microbiol. 2021, 12, 636684. [Google Scholar] [CrossRef]
- ten Cate, J.M. Biofilms, a New Approach to the Microbiology of Dental Plaque. Odontology 2006, 94, 1–9. [Google Scholar] [CrossRef]
- Meyer, F.; Enax, J.; Epple, M.; Amaechi, B.T.; Simader, B. Cariogenic Biofilms: Development, Properties, and Biomimetic Preventive Agents. Dent. J. 2021, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Sundh, B.; Odman, P. A Study of Fixed Prosthodontics Performed at a University Clinic 18 Years after Insertion. Int. J. Prosthodont. 1997, 10, 513–519. [Google Scholar] [PubMed]
- Filemban, H.; Bhadila, G.; Wang, X.; Melo, M.A.S.; Oates, T.W.; Hack, G.D.; Lynch, C.D.; Weir, M.D.; Sun, J.; Xu, H.H.K. Effects of Thermal Cycling on Mechanical and Antibacterial Durability of Bioactive Low-Shrinkage-Stress Nanocomposite. J. Dent. 2022, 124, 104218. [Google Scholar] [CrossRef]
- Ferracane, J.L. Developing a More Complete Understanding of Stresses Produced in Dental Composites during Polymerization. Dent. Mater. 2005, 21, 36–42. [Google Scholar] [CrossRef]
- Alhussein, A.; Alsahafi, R.; Wang, X.; Mitwalli, H.; Filemban, H.; Hack, G.D.; Oates, T.W.; Sun, J.; Weir, M.D.; Xu, H.H.K. Novel Dental Low-Shrinkage-Stress Composite with Antibacterial Dimethylaminododecyl Methacrylate Monomer. J. Funct. Biomater. 2023, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.-H.; Chen, R.-S.; Chang, Y.-L.; Chen, M.-H.; Cheng, K.-C.; Su, W.-F. Biphenyl Liquid Crystalline Epoxy Resin as a Low-Shrinkage Resin-Based Dental Restorative Nanocomposite. Acta Biomater. 2012, 8, 4151–4161. [Google Scholar] [CrossRef]
- Arrais, C.A.G.; de Oliveira, M.T.; Mettenburg, D.; Rueggeberg, F.A.; Giannini, M. Silorane- and High Filled-Based “Low-Shrinkage” Resin Composites: Shrinkage, Flexural Strength and Modulus. Braz. Oral. Res. 2013, 27, 97–102. [Google Scholar] [CrossRef]
- Lu, H.; Carioscia, J.A.; Stansbury, J.W.; Bowman, C.N. Investigations of Step-Growth Thiol-Ene Polymerizations for Novel Dental Restoratives. Dent. Mater. 2005, 21, 1129–1136. [Google Scholar] [CrossRef]
- Yamauchi, S.; Wang, X.; Egusa, H.; Sun, J. High-Performance Dental Adhesives Containing an Ether-Based Monomer. J. Dent. Res. 2020, 99, 189–195. [Google Scholar] [CrossRef]
- Cury, J.A.; Tenuta, L.M.A. Enamel Remineralization: Controlling the Caries Disease or Treating Early Caries Lesions? Braz. Oral. Res. 2009, 23 (Suppl. S1), 23–30. [Google Scholar] [CrossRef]
- Rath, S.; Bal, S.C.B.; Dubey, D. Oral Biofilm: Development Mechanism, Multidrug Resistance, and Their Effective Management with Novel Techniques. Rambam Maimonides Med. J. 2021, 12, e0004. [Google Scholar] [CrossRef] [PubMed]
- Antonucci, J.M.; Zeiger, D.N.; Tang, K.; Lin-Gibson, S.; Fowler, B.O.; Lin, N.J. Synthesis and Characterization of Dimethacrylates Containing Quaternary Ammonium Functionalities for Dental Applications. Dent. Mater. 2012, 28, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S. Bio-Active Restorative Materials with Antibacterial Effects: New Dimension of Innovation in Restorative Dentistry. Dent. Mater. J. 2009, 28, 11–19. [Google Scholar] [CrossRef]
- Beyth, N.; Yudovin-Farber, I.; Bahir, R.; Domb, A.J.; Weiss, E.I. Antibacterial Activity of Dental Composites Containing Quaternary Ammonium Polyethylenimine Nanoparticles against Streptococcus Mutans. Biomaterials 2006, 27, 3995–4002. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Kinomoto, Y.; Tarumi, H.; Ebisu, S.; Tay, F.R. Antibacterial Activity and Bonding Characteristics of an Adhesive Resin Containing Antibacterial Monomer MDPB. Dent. Mater. 2003, 19, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Weir, M.D.; Zhang, K.; Deng, D.; Cheng, L.; Xu, H.H.K. Synthesis of New Antibacterial Quaternary Ammonium Monomer for Incorporation into CaP Nanocomposite. Dent. Mater. 2013, 29, 859–870. [Google Scholar] [CrossRef]
- Han, Q.; Li, B.; Zhou, X.; Ge, Y.; Wang, S.; Li, M.; Ren, B.; Wang, H.; Zhang, K.; Xu, H.H.K.; et al. Anti-Caries Effects of Dental Adhesives Containing Quaternary Ammonium Methacrylates with Different Chain Lengths. Materials 2017, 10, 643. [Google Scholar] [CrossRef]
- Namba, N.; Yoshida, Y.; Nagaoka, N.; Takashima, S.; Matsuura-Yoshimoto, K.; Maeda, H.; Van Meerbeek, B.; Suzuki, K.; Takashiba, S. Antibacterial Effect of Bactericide Immobilized in Resin Matrix. Dent. Mater. 2009, 25, 424–430. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in Oral Care Products—A Review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef]
- Lin, J.; Zhu, J.; Gu, X.; Wen, W.; Li, Q.; Fischer-Brandies, H.; Wang, H.; Mehl, C. Effects of Incorporation of Nano-Fluorapatite or Nano-Fluorohydroxyapatite on a Resin-Modified Glass Ionomer Cement. Acta Biomater. 2011, 7, 1346–1353. [Google Scholar] [CrossRef]
- Alhussein, A.; Alsahafi, R.; Balhaddad, A.A.; Mokeem, L.; Schneider, A.; Jabra-Rizk, M.-A.; Masri, R.; Hack, G.D.; Oates, T.W.; Sun, J.; et al. Novel Bioactive Nanocomposites Containing Calcium Fluoride and Calcium Phosphate with Antibacterial and Low-Shrinkage-Stress Capabilities to Inhibit Dental Caries. Bioengineering 2023, 10, 991. [Google Scholar] [CrossRef] [PubMed]
- Weir, M.D.; Moreau, J.L.; Levine, E.D.; Strassler, H.E.; Chow, L.C.; Xu, H.H.K. Nanocomposite Containing CaF(2) Nanoparticles: Thermal Cycling, Wear and Long-Term Water-Aging. Dent. Mater. 2012, 28, 642–652. [Google Scholar] [CrossRef] [PubMed]
- Melo, M.A.S.; Guedes, S.F.F.; Xu, H.H.K.; Rodrigues, L.K.A. Nanotechnology-Based Restorative Materials for Dental Caries Management. Trends Biotechnol. 2013, 31, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Mitwalli, H.; Balhaddad, A.A.; AlSahafi, R.; Oates, T.W.; Melo, M.A.S.; Xu, H.H.K.; Weir, M.D. Novel CaF2 Nanocomposites with Antibacterial Function and Fluoride and Calcium Ion Release to Inhibit Oral Biofilm and Protect Teeth. J. Funct. Biomater. 2020, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Cheng, L.; Wu, E.J.; Weir, M.D.; Bai, Y.; Xu, H.H.K. Effect of Water-Ageing on Dentine Bond Strength and Anti-Biofilm Activity of Bonding Agent Containing New Monomer Dimethylaminododecyl Methacrylate. J. Dent. 2013, 41, 504–513. [Google Scholar] [CrossRef]
- Braga, R.R.; Ballester, R.Y.; Ferracane, J.L. Factors Involved in the Development of Polymerization Shrinkage Stress in Resin-Composites: A Systematic Review. Dent. Mater. 2005, 21, 962–970. [Google Scholar] [CrossRef]
- Mjör, I.A.; Moorhead, J.E.; Dahl, J.E. Reasons for Replacement of Restorations in Permanent Teeth in General Dental Practice. Int. Dent. J. 2000, 50, 361–366. [Google Scholar] [CrossRef]
- Soares, C.J.; Faria-E-Silva, A.L.; de Rodrigues, M.P.; Vilela, A.B.F.; Pfeifer, C.S.; Tantbirojn, D.; Versluis, A. Polymerization Shrinkage Stress of Composite Resins and Resin Cements—What Do We Need to Know? Braz. Oral. Res. 2017, 31, e62. [Google Scholar] [CrossRef]
- Pereira, R.D.; Valdívia, A.D.C.M.; Bicalho, A.A.; Franco, S.D.; Tantbirojn, D.; Versluis, A.; Soares, C.J. Effect of Photoactivation Timing on the Mechanical Properties of Resin Cements and Bond Strength of Fiberglass Post to Root Dentin. Oper. Dent. 2015, 40, E206–E221. [Google Scholar] [CrossRef]
- Bicalho, A.; Pereira, R.; Zanatta, R.; Franco, S.; Tantbirojn, D.; Versluis, A.; Soares, C. Incremental Filling Technique and Composite Material—Part I: Cuspal Deformation, Bond Strength, and Physical Properties. Oper. Dent. 2014, 39, e71–e82. [Google Scholar] [CrossRef]
- Soares, C.; Bicalho, A.; Verissimo, C.; Soares, P.; Tantbirojn, D.; Versluis, A. Delayed Photo-Activation Effects on Mechanical Properties of Dual Cured Resin Cements and Finite Element Analysis of Shrinkage Stresses in Teeth Restored With Ceramic Inlays. Oper. Dent. 2016, 41, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Models of Caries Formation around Dental Composite Restorations. J. Dent. Res. 2017, 96, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Moraes, R.R.; Garcia, J.W.; Barros, M.D.; Lewis, S.H.; Pfeifer, C.S.; Liu, J.; Stansbury, J.W. Control of Polymerization Shrinkage and Stress in Nanogel-Modified Monomer and Composite Materials. Dent. Mater. 2011, 27, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.K.; Stansbury, J.W. Photopolymerization Shrinkage-Stress Reduction in Polymer-Based Dental Restoratives by Surface Modification of Fillers. Dent. Mater. 2021, 37, 578–587. [Google Scholar] [CrossRef]
- Carioscia, J.A.; Lu, H.; Stanbury, J.W.; Bowman, C.N. Thiol-Ene Oligomers as Dental Restorative Materials. Dent. Mater. 2005, 21, 1137–1143. [Google Scholar] [CrossRef]
- He, J.; Cai, L.; Chen, Y.; He, Y.; Wang, M.; Tang, J.; Guan, H.; Wang, J.; Peng, X. Antitumor and Radiosensitizing Effects of SKLB-163, a Novel Benzothiazole-2-Thiol Derivative, on Nasopharyngeal Carcinoma by Affecting the RhoGDI/JNK-1 Signaling Pathway. Radiother. Oncol. 2018, 129, 30–37. [Google Scholar] [CrossRef]
- de Kruly, P.C.; Giannini, M.; Pascotto, R.C.; Tokubo, L.M.; Suga, U.S.G.; Marques, A.d.C.R.; Terada, R.S.S. Meta-Analysis of the Clinical Behavior of Posterior Direct Resin Restorations: Low Polymerization Shrinkage Resin in Comparison to Methacrylate Composite Resin. PLoS ONE 2018, 13, e0191942. [Google Scholar] [CrossRef]
- Hansel, C.; Leyhausen, G.; Mai, U.E.H.; Geurtsen, W. Effects of Various Resin Composite (Co)Monomers and Extracts on Two Caries-Associated Micro-Organisms in Vitro. J. Dent. Res. 1998, 77, 60–67. [Google Scholar] [CrossRef]
- Khalichi, P.; Cvitkovitch, D.G.; Santerre, J.P. Effect of Composite Resin Biodegradation Products on Oral Streptococcal Growth. Biomaterials 2004, 25, 5467–5472. [Google Scholar] [CrossRef]
- de Barbosa, R.P.S.; Pereira-Cenci, T.; da Silva, W.M.; Coelho-de-Souza, F.H.; Demarco, F.F.; Cenci, M.S. Effect of Cariogenic Biofilm Challenge on the Surface Hardness of Direct Restorative Materials in Situ. J. Dent. 2012, 40, 359–363. [Google Scholar] [CrossRef]
- Aljabo, A.; Xia, W.; Liaqat, S.; Khan, M.A.; Knowles, J.C.; Ashley, P.; Young, A.M. Conversion, Shrinkage, Water Sorption, Flexural Strength and Modulus of Re-Mineralizing Dental Composites. Dent. Mater. 2015, 31, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, L.; Bai, R.; Zhuang, Z.; Zhang, Y.; Yu, T.; Peng, L.; Xin, T.; Chen, S.; Han, B. Recent Progress in Antimicrobial Strategies for Resin-Based Restoratives. Polymers 2021, 13, 1590. [Google Scholar] [CrossRef] [PubMed]
- Imazato, S.; Imai, T.; Russell, R.R.; Torii, M.; Ebisu, S. Antibacterial Activity of Cured Dental Resin Incorporating the Antibacterial Monomer MDPB and an Adhesion-Promoting Monomer. J. Biomed. Mater. Res. 1998, 39, 511–515. [Google Scholar] [CrossRef]
- Breschi, L.; Maravic, T.; Cunha, S.R.; Comba, A.; Cadenaro, M.; Tjäderhane, L.; Pashley, D.H.; Tay, F.R.; Mazzoni, A. Dentin Bonding Systems: From Dentin Collagen Structure to Bond Preservation and Clinical Applications. Dent. Mater. 2018, 34, 78–96. [Google Scholar] [CrossRef]
- Mai, S.; Mauger, M.T.; Niu, L.-N.; Barnes, J.B.; Kao, S.; Bergeron, B.E.; Ling, J.-Q.; Tay, F.R. Potential Applications of Antimicrobial Peptides and Their Mimics in Combating Caries and Pulpal Infections. Acta Biomater. 2017, 49, 16–35. [Google Scholar] [CrossRef]
- Besinis, A.; van Noort, R.; Martin, N. Remineralization Potential of Fully Demineralized Dentin Infiltrated with Silica and Hydroxyapatite Nanoparticles. Dent. Mater. 2014, 30, 249–262. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Boccaccini, A.R.; Hupa, L.; Watts, D.C. Bioactive Dental Materials—Do They Exist and What Does Bioactivity Mean? Dent. Mater. 2018, 34, 693–694. [Google Scholar] [CrossRef]
- Materials|Free Full-Text|Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology—A Review. Available online: https://www.mdpi.com/1996-1944/12/17/2683 (accessed on 22 August 2023).
- Legfros, R.Z.; Sakae, T.; Bautista, C.; Retino, M.; Legeros, J.P. Magnesium and Carbonate in Enamel and Synthetic Apatites. 1996. Available online: https://journals.sagepub.com/doi/10.1177/08959374960100021801 (accessed on 22 August 2023).
- Laghzizil, A.; El Herch, N.; Bouhaouss, A.; Lorente, G.; Macquete, J. Comparison of Electrical Properties between Fluoroapatite and Hydroxyapatite Materials. J. Solid. State Chem. 2001, 156, 57–60. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, Z.; Moradian-Oldak, J. Effect of Fluoride on the Morphology of Calcium Phosphate Crystals Grown on Acid-Etched Human Enamel. Caries Res. 2009, 43, 132–136. [Google Scholar] [CrossRef]
- Arifa, M.K.; Ephraim, R.; Rajamani, T. Recent Advances in Dental Hard Tissue Remineralization: A Review of Literature. Int. J. Clin. Pediatr. Dent. 2019, 12, 139–144. [Google Scholar] [CrossRef]
- Dickens, S.H.; Flaim, G.M.; Takagi, S. Mechanical Properties and Biochemical Activity of Remineralizing Resin-Based Ca–PO4 Cements. Dent. Mater. 2003, 19, 558–566. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhussein, A.; Alsahafi, R.; Alfaifi, A.; Alenizy, M.; Ba-Armah, I.; Schneider, A.; Jabra-Rizk, M.-A.; Masri, R.; Garcia Fay, G.; Oates, T.W.; et al. Novel Remineralizing and Antibiofilm Low-Shrinkage-Stress Nanocomposites to Inhibit Salivary Biofilms and Protect Tooth Structures. Materials 2023, 16, 6770. https://doi.org/10.3390/ma16206770
Alhussein A, Alsahafi R, Alfaifi A, Alenizy M, Ba-Armah I, Schneider A, Jabra-Rizk M-A, Masri R, Garcia Fay G, Oates TW, et al. Novel Remineralizing and Antibiofilm Low-Shrinkage-Stress Nanocomposites to Inhibit Salivary Biofilms and Protect Tooth Structures. Materials. 2023; 16(20):6770. https://doi.org/10.3390/ma16206770
Chicago/Turabian StyleAlhussein, Abdullah, Rashed Alsahafi, Areej Alfaifi, Mohammad Alenizy, Ibrahim Ba-Armah, Abraham Schneider, Mary-Ann Jabra-Rizk, Radi Masri, Guadalupe Garcia Fay, Thomas W. Oates, and et al. 2023. "Novel Remineralizing and Antibiofilm Low-Shrinkage-Stress Nanocomposites to Inhibit Salivary Biofilms and Protect Tooth Structures" Materials 16, no. 20: 6770. https://doi.org/10.3390/ma16206770
APA StyleAlhussein, A., Alsahafi, R., Alfaifi, A., Alenizy, M., Ba-Armah, I., Schneider, A., Jabra-Rizk, M. -A., Masri, R., Garcia Fay, G., Oates, T. W., Sun, J., Weir, M. D., & Xu, H. H. K. (2023). Novel Remineralizing and Antibiofilm Low-Shrinkage-Stress Nanocomposites to Inhibit Salivary Biofilms and Protect Tooth Structures. Materials, 16(20), 6770. https://doi.org/10.3390/ma16206770