Network Structure and Luminescent Properties of ZnO–B2O3–Bi2O3–WO3:Eu3+ Glasses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization Techniques
2.3. The Reverse Monte Carlo Simulation
3. Results
3.1. XRD Analysis and DSC Studies
3.2. IR Spectral Analysis
3.3. Density, Molar Volume, Oxygen Packing Density, and Oxygen Molar Volume
3.4. RMC Modeling and Results
3.5. EPR Spectroscopy
3.6. Luminescent Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cho, J.; Park, J.H.; Kim, J.K.; Schubert, E.F. White light-emitting diodes: History, progress, and future. Laser Photonics Rev. 2017, 11, 1600147. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Duh, J.G.; Chiou, B.S.; Peng, C.G. Luminescent mechanisms of ZnS: Cu: Cl and ZnS: Cu: Al phosphors. Thin Solid Films 2001, 392, 50–55. [Google Scholar] [CrossRef]
- Kim, K.B.; Kim, Y.I.; Chun, H.G.; Cho, T.Y.; Jung, J.S.; Kang, J.G. Structural and optical properties of BaMgAl10O17: Eu2+ phosphor. Chem. Mater. 2002, 14, 5045–5052. [Google Scholar] [CrossRef]
- Trond, S.S.; Martin, J.S.; Stanavage, J.P.; Smith, A.L. Properties of Some Selected Europium-Activated Red Phosphors. J. Electrochem. Soc. 1969, 116, 1047–1050. [Google Scholar] [CrossRef]
- Feldmann, C.; Jüstel, T.; Ronda, C.R.; Schmidt, P.J. Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 2003, 13, 511–516. [Google Scholar] [CrossRef]
- Binnemans, K. Interpretation of europium (III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef]
- Setlur, A.A. Sensitizing Eu3+ with Ce3+ and Tb3+ to make narrow-line red phosphors for light emitting diodes. Electrochem. Solid-State Lett. 2012, 15, J25. [Google Scholar] [CrossRef]
- Hong, J.H.; Zhang, Z.G.; Cong, C.J.; Zhang, K.L. Energy transfer from Bi3+ sensitizing the luminescence of Eu3+ in clusters embedded into sol–gel silica glasses. J. Non-Cryst. Solids 2007, 353, 2431–2435. [Google Scholar] [CrossRef]
- Spadaro, F.; Rossi, A.; Laine, E.; Hartley, J.; Spencer, N.D. Mechanical and tribological properties of boron oxide and zinc borate glasses. Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B 2016, 57, 233–244. [Google Scholar] [CrossRef]
- Ehrt, D. Zinc and manganese borate glasses-phase separation, crystallization, photoluminescence and structure. Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B 2013, 54, 65–75. [Google Scholar]
- Ivankov, A.; Seekamp, J.; Bauhofer, W. Optical properties of Eu3+-doped zinc borate glasses. J. Lumin. 2006, 121, 123–131. [Google Scholar] [CrossRef]
- Taki, Y.; Shinozaki, K.; Honma, T.; Dimitrov, V.; Komatsu, T. Electronic polarizability and interaction parameter of gadolinium tungsten borate glasses with high WO3 content. J. Solid. State Chem. 2014, 220, 191–197. [Google Scholar] [CrossRef]
- Ali, A.A.; Fathi, A.M.; Ibrahim, S. Material characteristics of WO3/Bi2O3 substitution on the thermal, structural, and electrical properties of lithium calcium borate glasses. Appl. Phys. A 2023, 129, 299. [Google Scholar] [CrossRef]
- Milanova, M.; Aleksandrov, L.; Iordanova, R. Structure and luminescence properties of tungsten modified zinc borate glasses doped with Eu3+ ions. Mater. Today Proc. 2022, 61, 1206–1211. [Google Scholar] [CrossRef]
- Milanova, M.; Aleksandrov, L.; Yordanova, A.; Iordanova, R.; Tagiara, N.S.; Herrmann, A.; Gao, G.; Wondraczek, L.; Kamitsos, E.I. Structural and luminescence behavior of Eu3+ ions in ZnO-B2O3-WO3 glasses. J. Non-Cryst. Solids 2023, 600, 122006. [Google Scholar] [CrossRef]
- Yu, B.; Zhou, X.; Xia, H.; Chen, B.; Song, H. Novel Bi3+/Eu3+ co-doped oxyfluoride transparent KY3F10 glass ceramics with wide tunable emission and high optical temperature sensitivity. J. Lumin. 2021, 239, 118366. [Google Scholar] [CrossRef]
- Giraldo, O.G.; Fei, M.; Wei, R.; Teng, L.; Zheng, Z.; Guo, H. Energy transfer and white luminescence in Bi3+/Eu3+ co-doped oxide glasses. J. Lumin. 2020, 219, 116918. [Google Scholar] [CrossRef]
- Sontakke, A.D.; Tarafder, A.; Biswas, K.; Annapurna, K. Sensitized red luminescence from Bi3+ co-doped Eu3+: ZnO–B2O3 glasses. Phys. B Condens. Matter 2009, 404, 3525–3529. [Google Scholar] [CrossRef]
- Kaewkhao, J.; Boonin, K.; Yasaka, P.; Kim, H.J. Optical and luminescence characteristics of Eu3+ doped zinc bismuth borate (ZBB) glasses for red emitting device. Mater. Res. Bull. 2015, 71, 37–41. [Google Scholar] [CrossRef]
- Aleksandrov, L.; Yordanova, A.; Milanova, M.; Iordanova, R.; Fabian, M. Doping effect of WO3 on the structure and luminescent properties of Zno-B2O3-Bi2O3:Eu3+ glass. J. Chem. Technol. Metall. 2023, 58, 707–715. [Google Scholar]
- Svab, E.; Meszaros, G.; Deak, F. Neutron powder diffractometer at the Budapest research reactor. Mat. Sci. Forum 1996, 228, 247–252. [Google Scholar] [CrossRef]
- Gereben, O.; Jovari, P.; Temleitner, L.; Pusztai, L. A new version of the RMC++ Reverse Monte Carlo programme, aimed at investigating the structure of covalent glasses. J. Optoelec. Adv. Mater. 2007, 9, 3021–3027. [Google Scholar]
- Iordanova, R.; Milanova, M.; Aleksandrov, L.; Khanna, A. Structural study of glasses in the system B2O3-Bi2O3-La2O3-WO3. J. Non-Cryst. Solids 2018, 481, 254–259. [Google Scholar] [CrossRef]
- Kamitsos, E.I.; Patsis, A.P.; Karakassides, M.A.; Chryssikos, G.D. Infrared reflectance spectra of lithium borate glasses. J. Non-Cryst. Solids 1990, 126, 52–67. [Google Scholar] [CrossRef]
- Ouis, M.A.; El Batal, F.H.; Azooz, M.A. FTIR, optical and thermal studies of gadmium borate glass doped with Bi2O3 and effect of gamma irradiation. J. Aust. Ceram. Soc. 2020, 56, 283–290. [Google Scholar] [CrossRef]
- Islam, M.; Lazure, S.; Vannier, R.; Nowgorodski, G.; Mairesse, G. Structural and computational studies of Bi2WO6 based oxygen ion conductors. J. Mater. Chem. 1998, 8, 655–660. [Google Scholar] [CrossRef]
- Buttrey, D.; Vogt, T.; White, B. High-temperature incommensurate-to-commensurate phase transition in the Bi2MoO6 catalyst. J. Solid State Chem. 2000, 155, 206–208. [Google Scholar] [CrossRef]
- Sleight, A.W. Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Cryst. 1972, 28, 2899–2991. [Google Scholar] [CrossRef]
- Mączka, M.; Macalik, L.; Hermanovicz, K.; Kepinski, L.; Tomaszewski, P. Phonon properties of nanosized bismuth layered ferroelectric material—Bi2WO6. J. Raman Spectrosc. 2010, 41, 1059–1066. [Google Scholar] [CrossRef]
- Ma<monospace>̧</monospace>czka, M.; Macalik, L.; Hanuza, J. Raman and IR spectra of the cation-deficient Aurivillius layered crystal Bi2W2O9. J. Raman Spectrosc. 2009, 40, 2099–2103. [Google Scholar]
- Zhao, X.; Yao, W.; Wu, Y.; Zhang, S.; Yan, H.; Zhi, Y. Fabrication and photoelectrochemical properties of porous ZnWO4 film. J. Solid State Chem. 2006, 179, 2562–2570. [Google Scholar] [CrossRef]
- Varsamis, C.P.; Makris, E.N.; Valvi, C.; Kamitsos, E.I. Short-range structure, the role of bismuth and property-structure correlations in bismuth borate glasses. Phys. Chem. Chem. Phys. 2021, 23, 10006–10020. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.Y.; Möncke, D.; Kamitsos, E.I.; Houizot, P.; Celarie, F.; Rouxel, T.; Wondraczek, L. Structure and mechanical properties of copper-lead and copper-zinc borate glasses. J. Non-Cryst. Solids 2016, 435, 55–68. [Google Scholar] [CrossRef]
- Winterstein-Beckmann, A.; Moncke, D.; Palles, D.; Kamitsos, E.I.; Wondraczek, L. Structure and Properties of Orthoborate Glasses in the Eu2O3–(Sr,Eu)O–B2O3 Quaternary. J. Phys. Chem. B 2015, 119, 3259–3272. [Google Scholar] [CrossRef] [PubMed]
- Iordanova, R.; Milanova, M.; Aleksandrov, L.; Shinozaki, K.; Komatsu, T. Structural study of WO3-La2O3-B2O3-Nb2O5 glasses. J. Non-Cryst. Solids 2020, 543, 120132. [Google Scholar] [CrossRef]
- Aleksandrov, L.; Milanova, M.; Yordanova, A.; Iordanova, R.; Nedyalkov, N.; Petrova, P.; Tagiara, N.S.; Palles, D.; Kamitsos, E.I. Synthesis, structure and luminescence properties of Eu3+-doped 50ZnO.40B2O3.5WO3.5Nb2O5 glass. Phys. Chem. Glas. Eur. J. Glass Sci. Technol. B 2023, 64, 101–109. [Google Scholar]
- El-Fayoumi, M.A.K.; Farouk, M. Structural properties of Li-borate glasses doped with Sm3+ and Eu3+ ions. J. Alloys Compd. 2009, 482, 356–360. [Google Scholar] [CrossRef]
- Villegas, M.A.; Fernández Navarro, J.M. Physical and structural properties of glasses in the TeO2–TiO2–Nb2O5 system. J. Eur. Ceram. Soc. 2007, 27, 2715–2723. [Google Scholar] [CrossRef]
- Fabian, M.; Araczki, C. Basic network structure of SiO2-Na2O-B2O3 glasses from diffraction and reverse Monte Carlo simulation. Phys. Scrip. 2016, 91, 054004. [Google Scholar] [CrossRef]
- Fabian, M.; Svab, E.; Krezhov, K. Network structure with mixed bond-angle linkages in MoO3-ZnO-B2O3 glasses: Neutron diffraction and reverse Monte Carlo modelling. J. Non-Cryst. Solids 2016, 433, 6–13. [Google Scholar] [CrossRef]
- Othman, H.; Valiev, D.; Polisadova, E. Structural and mechanical properties of zinc aluminoborate glasses with different content of aluminium oxide. J. Mater. Sci Mater. Electron. 2017, 28, 4647–4653. [Google Scholar] [CrossRef]
- Brodbeck, M.; Iton, L.E. The EPR spectra of Gd3+ and Eu3+ in glassy systems. J. Chem. Phys. 1985, 83, 4285–4299. [Google Scholar] [CrossRef]
- Nandyala, S.; Hungerford, G.; Babu, S.; Rao, J.L.; Leonor, I.B.; Pires, R.; Reis, R.L. Time resolved emission and electron paramagnetic resonance studies of Gd3+ doped calcium phosphate glasses. Adv. Mater. Lett. 2016, 7, 277–281. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. Luminescent Materials, 1st ed.; Springer: Berlin/Heidelber, Germany, 1994; p. 18. [Google Scholar]
- Hoefdraad, H.E. The charge-transfer absorption band of Eu3+ in oxides. J. Solid State Chem. 1975, 15, 175–177. [Google Scholar] [CrossRef]
- Parchur, A.K.; Ningthoujam, R.S. Behaviour of electric and magnetic dipole transitions of Eu3+, 5D0→7F0 and Eu–O charge transfer band in Li+ co-doped YPO4:Eu3+. RSC Adv. 2012, 2, 10859–10868. [Google Scholar] [CrossRef]
- Mariselvam, K.; Juncheng, L. Synthesis and luminescence properties of Eu3+ doped potassium titano telluroborate (KTTB) glasses for red laser applications. J. Lumin. 2021, 230, 117735. [Google Scholar] [CrossRef]
- Dutta, P.S.; Khanna, A. Eu3+ activated molybdate and tungstate based red phosphors with charge transfer band in blue region. ECS J. Solid State Sci. Technol. 2013, 2, R3153–R3167. [Google Scholar] [CrossRef]
- Thieme, C.; Herrmann, A.; Kracker, M.; Patzig, C.; Höche, T.; Rüssel, C. Microstructure investigation and fluorescence properties of Europium-doped scheelite crystals in glass-ceramics made under different synthesis conditions. J. Lumin. 2021, 238, 118244. [Google Scholar] [CrossRef]
- Minquan, W.; Xianping, F.; Guohong, X. Luminescence of Bi3+ ions and energy transfer from Bi3+ ions to Eu3+ ions in silica glasses prepared by the sol-gel process. J. Phys. Chem. Solids 1995, 56, 859–862. [Google Scholar] [CrossRef]
- Sungpanich, J.; Thongtem, T.; Thongtem, S. Large-scale synthesis of WO3 nanoplates by a microwave-hydrothermal method. Ceram. Int. 2012, 38, 1051–1055. [Google Scholar] [CrossRef]
- Shionoya, S.; Yen, W.M.; Yamamoto, H. Phosphor Handbook, 2nd ed.; CRC Press: London, UK; New York, NY, USA, 2018; p. 177. [Google Scholar]
- Gandhi, Y.; Kityk, I.V.; Brik, M.G.; Rao, P.R.; Veeraiah, N. Influence of tungsten on the emission features of Nd3+, Sm3+ and Eu3+ ions in ZnF2–WO3–TeO2 glasses. J. Alloys Compd. 2010, 508, 278–291. [Google Scholar] [CrossRef]
- Devi, C.H.B.; Mahamuda, S.; Swapna, K.; Venkateswarlu, M.; Rao, A.S.; Prakash, G.V. Compositional dependence of red luminescence from Eu3+ ions doped single and mixed alkali fluoro tungsten tellurite glasses. Opt. Mater. 2017, 73, 260–267. [Google Scholar] [CrossRef]
- Nogami, M.; Umehara, N.; Hayakawa, T. Effect of hydroxyl bonds on persistent spectral hole burning in Eu3+ doped BaO-P2O5 glasses. Phys. Rev. B 1998, 58, 6166–6171. [Google Scholar] [CrossRef]
- Swapna, K.; Mahamuda, S.; Rao, A.S.; Sasikala, T.; Packiyaraj, P.; Moorthy, L.R.; Vijayaprakash, G. Luminescence characterization of Eu3+ doped Zinc Alumino Bismuth Borate glasses for visible red emission applications. J. Lumin. 2014, 156, 80–86. [Google Scholar] [CrossRef]
- Raju, B.D.; Reddy, C.M. Structural and optical investigations of Eu3+ ions in lead containing alkali fluoroborate glasses. Opt. Mater. 2012, 34, 1251–1260. [Google Scholar] [CrossRef]
- Bettinelli, M.; Speghini, A.; Ferrari, M.; Montagna, M. Spectroscopic investigation of zinc borate glasses doped with trivalent europium ions. J. Non-Cryst. Solids 1996, 201, 211–221. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Buddhudu, S. Spectral analysis of Eu3+ and Tb3+:B2O3-ZnO-PbO glasses. Mater. Chem. Phys. 2007, 102, 181–186. [Google Scholar] [CrossRef]
- Babu, A.M.; Jamalaiah, B.C.; Suhasini, T.; Rao, T.S.; Moorthy, L.R. Optical properties of Eu3+ ions in lead tungstate tellurite glasses. Solid State Sci. 2011, 13, 574–578. [Google Scholar] [CrossRef]
- Bindu, S.H.; Raju, D.S.; Krishna, V.V.; Rao, T.R.; Veerabrahmam, K.; Raju, C.L. UV light induced red emission in Eu3+-doped zincborophosphate glasses. Opt. Mater. 2016, 62, 655–665. [Google Scholar] [CrossRef]
- Gökçe, M. Development of Eu3+ doped bismuth germanate glasses for red laser applications. J. Non-Cryst. Solids 2019, 505, 272–278. [Google Scholar] [CrossRef]
- Kabir, M.; Ghahari, M.; Afarani, M.S. Co-precipitation synthesis of nano Y2O3: Eu3+ with different morphologies and its photoluminescence properties. Ceram. Int. 2014, 40, 10877–10885. [Google Scholar] [CrossRef]
- Som, S.; Mitra, P.; Kumar, V.; Kumar, V.; Terblans, J.J.; Swart, H.C.; Sharma, S.K. The energy transfer phenomena and colour tunability in Y2O2S: Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans. 2014, 43, 9860–9871. [Google Scholar] [CrossRef] [PubMed]
Infrared Bands Position (cm−1) | Assignment | Ref. |
---|---|---|
475 | ν4[WO4]2− + Bi–O vibrations in the BiO6 groups | [32,35] |
680 | Bending vibrations of B–O–B bonds in superstructural | [32] |
640–625 | Bending vibrations of B–O–B bonds in meta- and pyroborates + Bi–O vibrations in the BiO6 groups | [32] |
860–870 | νWO6 | [14,23] |
940; 880 | ν3[WO4]2− in distorted tetrahedra | [23] |
1050–1035 | νasBØ4− involved in superstructural units | [14,23] |
1100 | νas(B–O–B); B–O–B bridge in pyroborate units, B2O54− | [24,35] |
1245 | νas(B–O–B); B–O–B bridges connect BO3 units + BO3 stretch in meta-, pyro-, orthoborate units | [15,36] |
1350 | ν(B–O−) stretch in BØ2O− units charge balanced by Bi3+ | [32] |
1460 | ν(B–O−) stretch in BØ2O− units | [23] |
Sample ID | ρg (g/cm3) | Vm (cm3/mol) | Vo (cm3/mol) | OPD (g atom/L) |
---|---|---|---|---|
ZBW1:Eu | 3.475± 0.002 | 22.70 | 11.29 | 88.55 |
ZBW5:Eu | 3.689± 0.002 | 23.14 | 11.51 | 86.86 |
ZBW10:Eu * | 3.910 ± 0.002 * | 23.91 * | 11.73 * | 84.27 * |
ZBBW1:Eu | 3.679 ± 0.001 | 22.57 | 11.20 | 89.28 |
ZBBW5:Eu | 3.889 ± 0.005 | 23.01 | 11.42 | 87.57 |
ZBW10:Eu | 4.175 ± 0.001 | 23.38 | 11.60 | 86.18 |
Title 1 | Zn–O gij(r) (Å) | B–O gij(r) (Å) | Bi–O gij(r) (Å) | W–O gij(r) (Å) | Eu–O gij(r) (Å) | O–O gij(r) (Å) |
---|---|---|---|---|---|---|
ZBBW1:Eu | 1.95 ± 0.01 | 1.40/1.80 ± 0.05 | 2.00 ± 0.05 | 1.75 ± 0.05 | 2.20 ± 0.05 | 2.35 ± 0.03 |
ZBBW5:Eu | 1.95 ± 0.01 | 1.40/1.80 ± 0.05 | 2.00 ± 0.05 | 1.75 ± 0.05 | 2.20 ± 0.05 | 2.35 ± 0.03 |
ZBB10:Eu | 1.95 ± 0.01 | 1.40/1.80 ± 0.05 | 2.00 ± 0.05 | 1.75 ± 0.05 | 2.20 ± 0.05 | 2.35 ± 0.03 |
Sample | Zn–O CNij | B–O CNij | W–O CNij | O–O CNij |
---|---|---|---|---|
ZBBW1:Eu | 4.01 ± 0.05 (min: 1.80–max: 2.20) | 3.90 ± 0.05 (min: 1.20–max: 1.65) | 6.20 ± 0.1 (min: 1.65–max: 2.23) | 5.63 ± 0.1 (min: 2.20–max: 2.60) |
ZBBW5:Eu | 3.99 ± 0.05 (min: 1.80–max: 2.20) | 3.52 ± 0.05 (min: 1.20–max: 1.65) | 6.42 ± 0.1 (min: 1.60–max: 2.25) | 5.32 ± 0.1 (min: 2.20–max: 2.60) |
ZBBW10:Eu | 3.97 ± 0.05 (min: 1.80–max: 2.20) | 3.48 ± 0.05 (min: 1.20–max: 1.65) | 6.73 ± 0.1 (min: 1.60–max: 2.25) | 5.54 ± 0.1 (min: 2.20–max: 2.60) |
Glass Composition | R Values | Ref. |
---|---|---|
50ZnO:48B2O3:1Bi2O3:1WO3:0.5Eu2O3 | 4.61 | Present work |
50ZnO:44B2O3:1Bi2O3:5WO3:0.5Eu2O3 | 5.04 | Present work |
50ZnO: 40B2O3:10WO3:0.5Eu2O3 | 5.57 | [12] |
50ZnO:39B2O3:1Bi2O3:10WO3:0.5Eu2O3 | 5.73 | Present work |
50ZnO:40B2O3:10WO3:xEu2O3 (0 ≤ x ≤ 10) | 4.54–5.77 | [15] |
50ZnO:40B2O3:5WO3:5Nb2O5:xEu2O3 (x = 0, 0·1, 0·5, 1, 2, 5 and 10) | 5.09–5.76 | [36] |
50ZnO:(40 − x)B2O3:10Bi2O3:0.5Eu2O3:xWO3, x = 0 and 0.5 | 3.58; 3.79 | [20] |
20ZnO:8Al2O3:(12 − x)Bi2O3:60B2O3:xEu2O3 | 1.951–2.78 | [56] |
39.5Li2O:59.5SiO2:1Eu2O3 | 3.20 | [57] |
4ZnO:3B2O3 0.5 ÷ 2.5 mol% Eu3+ | 3.94–2.74 | [58] |
Eu3+: 45B2O3-5ZnO-49PbO | 3.03 | [59] |
15PbF2:25WO3:(60 − x)TeO2:xEu2O3 x = 0.1, 0.5, 1.0 and 2.0 mol% | 2.37–2.78 | [60] |
40ZnO:(30 − x) B2O3:30P2O5:xEu2O3 (0.1 ≤ x ≤ 0.9) | 2.96–3.65 | [61] |
60ZnO:(40x)B2O3:0.2Eu2O3:xBi2O3 (x = 0, 0.1, 0.2, 0.5, 1.0) | 2.98 | [18] |
(100 − x):(0.2Bi2O3–0.8GeO2):xEu2O3 (x = 0.5, 1, 1.5, 2 mol%) | 3.94–4.21 | [62] |
Eu3+:Y2O3 | 3.8–5.2 | [63] |
Eu3+ doped Y2O2S | 6.45–6.62 | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yordanova, A.; Milanova, M.; Iordanova, R.; Fabian, M.; Aleksandrov, L.; Petrova, P. Network Structure and Luminescent Properties of ZnO–B2O3–Bi2O3–WO3:Eu3+ Glasses. Materials 2023, 16, 6779. https://doi.org/10.3390/ma16206779
Yordanova A, Milanova M, Iordanova R, Fabian M, Aleksandrov L, Petrova P. Network Structure and Luminescent Properties of ZnO–B2O3–Bi2O3–WO3:Eu3+ Glasses. Materials. 2023; 16(20):6779. https://doi.org/10.3390/ma16206779
Chicago/Turabian StyleYordanova, Aneliya, Margarita Milanova, Reni Iordanova, Margit Fabian, Lyubomir Aleksandrov, and Petia Petrova. 2023. "Network Structure and Luminescent Properties of ZnO–B2O3–Bi2O3–WO3:Eu3+ Glasses" Materials 16, no. 20: 6779. https://doi.org/10.3390/ma16206779
APA StyleYordanova, A., Milanova, M., Iordanova, R., Fabian, M., Aleksandrov, L., & Petrova, P. (2023). Network Structure and Luminescent Properties of ZnO–B2O3–Bi2O3–WO3:Eu3+ Glasses. Materials, 16(20), 6779. https://doi.org/10.3390/ma16206779