Influence of Interface on Mechanical Behavior of Al-B4C/Al Laminated Composites under Quasi-Static and Impact Loading
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Al-B4C/Al Laminated Composites
2.2. Microstructure Characterization
2.3. Mechanical Properties
3. Results and Discussion
3.1. Interfacial Microstructure of Al-B4C/Al Laminated Composites
3.2. Mechanical Properties of Al-B4C/Al Laminated Composites under Quasi-Static Loading
3.2.1. Tensile Properties of Al-B4C/Al Laminated Composites along RD
3.2.2. Tensile Properties of Al-B4C/Al Laminated Composites along ND
3.2.3. Bending Properties of Al-B4C/Al Laminated Composites
3.3. Properties of Al-B4C/Al Laminated Composites under Impact Loading
4. Discussion
4.1. Interface Behavior and Fracture Mechanism of Al-B4C/Al Laminated Composites under Quasi-Static Loading
4.2. Fracture of Al-B4C/Al Laminated Composites under Impact Loading
5. Conclusions
- The Al-B4C/Al laminated composites with a high interface bonding strength are prepared through integrated hot-pressed sintering in the atmosphere.
- The comprehensive performance of the Al-B4C/Al laminated composites is obtained based on the high interface bonding strength, because no interface delamination occurs even after fractures under quasi-static and dynamic loading.
- The fracture of the Al-B4C/Al laminated composites can be delayed through adjusting the laminated structure form (or loading form), compared with the homogeneous B4C/Al composites.
- The laminated structure of the Al-B4C/Al composites improves the energy absorption effect during the impact fracture, due to the stress transition and relaxation based on the high interface bonding strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deng, Z.; Hong, X.; Chao, Y. Effect of intermetallic compounds distribution on bonding strength of steel–aluminum laminates. Mater. Des. 2022, 222, 111106. [Google Scholar] [CrossRef]
- Arigela, V.; Palukuri, N.; Singh, D.; Kolli, S.; Jayaganthan, R.; Chekhonin, P.; Scharnweber, J.; Skrotzki, W. Evolution of microstructure and mechanical properties in 2014 and 6063 similar and dissimilar aluminium alloy laminates produced by accumulative roll bonding. J. Alloys Compd. 2019, 790, 917–927. [Google Scholar] [CrossRef]
- Mo, T.; Chen, Z.; Li, B.; Huang, H.; He, W.; Liu, Q. Effect of cross rolling on the interface morphology and mechanical properties of ARBed AA1100/AA7075 laminated metal composites. J. Alloys Compd. 2019, 805, 617–623. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, F.; Xi, T.; Lai, C.; Ye, H. Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Compos. Part B Eng. 2011, 42, 1468–1473. [Google Scholar] [CrossRef]
- Huang, H.; Chen, P.; Ji, C. Solid-liquid cast-rolling bonding (SLCRB) and annealing of Ti/Al cladding strip. Mater. Des. 2017, 118, 233–244. [Google Scholar] [CrossRef]
- Ghalandari, L.; Mahdavian, M.; Reihanian, M. Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB). Mater. Sci. Eng. A 2014, 593, 145–152. [Google Scholar] [CrossRef]
- Nie, H.; Chi, C.; Chen, H.; Li, X.; Liang, W. Microstructure evolution of Al/Mg/Al laminates in deep drawing process. J. Mater. Res. Technol. 2019, 8, 5325–5335. [Google Scholar] [CrossRef]
- Mo, T.; Chen, Z.; Chen, H.; He, W.; Liu, Q. Multiscale interfacial structure strengthening effect in Al alloy laminated metal composites fabricated by accumulative roll bonding. Mater. Sci. Eng. A 2019, 766, 138354. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Y.; Liu, B.; Zhao, Y.; Ren, J.; Yan, Y.; Cao, R.; Chen, J. In-situ investigation of deformation behavior and fracture mechanism of laminated Al/Ti composites fabricated by hot rolling. J. Alloys Compd. 2019, 783, 55–65. [Google Scholar] [CrossRef]
- He, P.; Yue, X.; Zhang, J.H. Hot pressing diffusion bonding of a titanium alloy to a stainless steel with an aluminum alloy interlayer. Mater. Sci. Eng. A 2008, 486, 171–176. [Google Scholar] [CrossRef]
- Cao, M.; Wang, C.-J.; Deng, K.-K.; Nie, K.-B.; Liang, W.; Wu, Y.-C. Effect of interface on mechanical properties and formability of Ti/Al/Ti laminated composites. J. Mater. Res. Technol. 2021, 14, 1655–1669. [Google Scholar] [CrossRef]
- Lee, W.-B.; Bang, K.-S.; Jung, S.-B. Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing. J. Alloys Compd. 2005, 390, 212–219. [Google Scholar] [CrossRef]
- Xia, H.-B.; Wang, S.-G.; Ben, H.-F. Microstructure and mechanical properties of Ti/Al explosive cladding. Mater. Des. 2014, 56, 1014–1019. [Google Scholar] [CrossRef]
- Mo, T.; Chen, Z.; Zhou, D.; Lu, G.; Huang, Y.; Liu, Q. Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites. J. Mater. Sci. Technol. 2022, 99, 28–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Z.; Tan, Z.; Zhao, H.; Fan, G.; Xu, Y.; Xiong, D.-B.; Li, Z. Bioinspired hierarchical Al2O3/Al laminated composite fabricated by flake powder metallurgy. Compos. Part A Appl. 2021, 140, 106187. [Google Scholar] [CrossRef]
- Song, M. Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites. Trans. Nonferrous Met. Soc. China 2009, 19, 1400–1404. [Google Scholar] [CrossRef]
- Reihanian, M.; Hadadian, F.K.; Paydar, M.H. Fabrication of Al-2 vol% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): An investigation of the microstructure and mechanical properties. Mater. Sci. Eng. A 2014, 607, 188–196. [Google Scholar] [CrossRef]
- Shorowordi, K.M.; Laoui, T.; Haseeb, A.S.M.A.; Celis, J.P.; Froyen, L. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: A comparative study. J. Mater. Process. Technol. 2003, 142, 738–743. [Google Scholar] [CrossRef]
- Ghasali, E.; Alizadeh, M.; Ebadzadeh, T. Mechanical and microstructure comparison between microwave and spark plasma sintering of Al–B4C composite. J. Alloys Compd. 2016, 655, 93–98. [Google Scholar] [CrossRef]
- Chao, Z.L.; Jiang, L.T.; Chen, G.Q.; Qiao, J.; Yu, Z.H.; Cao, Y.F.; Wu, G.H. The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction. Compos. Part B Eng. 2019, 161, 627–638. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Z.; Zheng, Q.; Sun, Q.; Zheng, B. Rapid preparation of B4Cp/Al composites with homogeneous interface via ultrasound assisted casting method. J. Alloys Compd. 2021, 858, 157659. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, Z.; Zhang, Y.; Cui, Y.; Sun, L.; Chen, D. Improving the mechanical properties of B4C/Al composites by solid-state interfacial reaction. J. Alloys Compd. 2020, 829, 154521. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Ma, K.; Zhang, D.; Xiong, S.; Zhang, J.; Luo, G.; Chen, F.; Shen, Q.; Zhang, L.; et al. Synthesis of AA7075-AA7075/B4C bilayer composite with enhanced mechanical strength via plasma activated sintering. J. Alloys Compd. 2017, 701, 416–424. [Google Scholar] [CrossRef]
- Wu, C.; Shi, R.; Zhang, J.; Luo, G.; Shen, Q.; Gan, Z.; Liu, J.; Zhang, L. Synthesis of functionally graded AA7075-B4C com-posite with multi-level gradient structure. Ceram. Int. 2019, 45, 7761–7766. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, G.; Li, Q.; Wu, J.; Qi, F.; Wang, Z. Design and deformation behaviour of a laminar B4C/Al composite. Ceram. Int. 2018, 44, 20560–20565. [Google Scholar] [CrossRef]
- Karamis, M.B.; Nair, F.; Cerit, A.A. The metallurgical and deformation behaviours of laminar metal matrix composites after ballistic impact. J. Mater. Process. Technol. 2009, 209, 4880–4889. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Y.; Xu, G.; Fu, Y.; Li, T.; Wang, T.; Guo, Q. Microstructure and Performance of a Three-Layered Al/7075–B4C/Al Composite Prepared by Semi Continuous Casting and Hot Rolling. Metals 2018, 8, 600. [Google Scholar] [CrossRef]
- Chen, H.S.; Wang, W.X.; Nie, H.H.; Zhou, J.; Li, Y.L.; Liu, R.F.; Zhang, Y.Y.; Zhang, P. Microstructure evolution and mechanical properties of B4C/6061Al neutron absorber composite sheets fabricated by powder metallurgy. J. Alloys Compd. 2018, 730, 342–351. [Google Scholar] [CrossRef]
- Xu, Z.G.; Jiang, L.T.; Zhang, Q.; Qiao, J.; Wu, G.H. The microstructure and influence of hot extrusion on tensile properties of (Gd+B4C)/Al composite. J. Alloys Compd. 2017, 729, 1234–1243. [Google Scholar] [CrossRef]
- Baradeswaran, A.; Elaya Perumal, A. Influence of B4C on the tribological and mechanical properties of Al 7075–B4C composites. Compos. Part B Eng. 2013, 54, 146–152. [Google Scholar] [CrossRef]
- Park, J.-J.; Hong, S.-M.; Lee, M.-K.; Rhee, C.-K.; Rhee, W.-H. Enhancement in the microstructure and neutron shielding efficiency of sandwich type of 6061Al–B4C composite material via hot isostatic pressing. Nucl. Eng. Des. 2015, 282, 1–7. [Google Scholar] [CrossRef]
- Tariq, N.u.H.; Gyansah, L.; Qiu, X.; Jia, C.; Awais, H.B.; Zheng, C.; Du, H.; Wang, J.; Xiong, T. Achieving strength-ductility synergy in cold spray additively manufactured Al/B4C composites through a hybrid post-deposition treatment. J. Mater. Sci. Technol. 2019, 35, 1053–1063. [Google Scholar] [CrossRef]
- Gao, M.; Chen, Z.; Kang, H.; Guo, E.; Li, R.; Fu, Y.; Xie, H.; Wang, T. Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures. J. Mater. Sci. Technol. 2019, 35, 1523–1531. [Google Scholar] [CrossRef]
- Paul, H.; Petrzak, P.; Chulist, R.; Maj, Ł.; Mania, I.; Prażmowski, M. Effect of impact loading and heat treatment on micro-structure and properties of multi-layered AZ31/AA1050 plates fabricated by single-shot explosive welding. Mater. Des. 2022, 214, 110411. [Google Scholar] [CrossRef]
- Hua, A.; Su, Y.; Cai, Y.; Wang, X.; Liu, K.; Cao, H.; Zhang, D.; Ouyang, Q. Fabrication, microstructure characterization and mechanical properties of B4C microparticles and SiC nanowires hybrid reinforced aluminum matrix composites. Mater. Charact. 2022, 193, 112243. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Li, Q.; Wu, J.; Shi, G.; Qi, F.; Zhou, X. Microtopography and mechanical properties of vacuum hot pressing Al/B4C composites. Ceram. Int. 2018, 44, 3048–3055. [Google Scholar] [CrossRef]
- Alizadeh, M.; Paydar, M.H.; Sharifian Jazi, F. Structural evaluation and mechanical properties of nanostructured Al/B4C composite fabricated by ARB process. Compos. Part B Eng. 2013, 44, 339–343. [Google Scholar] [CrossRef]
- Park, B.; Lee, D.; Jo, I.; Lee, S.B.; Lee, S.K.; Cho, S. Automated quantification of reinforcement dispersion in B4C/Al metal matrix composites. Compos. Part B Eng. 2020, 181, 107584. [Google Scholar] [CrossRef]
- Guo, H.; Li, J.; Liu, N.; Wei, X.; Fan, M.; Shang, Y.; Jiang, W.; Zhang, Y.; Cui, Y.; Sun, L.; et al. Strengthening and toughening B4C/Al composites via optimizing the Al2O3 distribution during hot rolling. J. Alloys Compd. 2022, 902, 163773. [Google Scholar] [CrossRef]
- Wen, X.; Wan, M.; Huang, C.; Tan, Y.; Lei, M.; Liang, Y.; Cai, X. Effect of microstructure on tensile properties, impact toughness and fracture toughness of TC21 alloy. Mater. Des. 2019, 180, 107898. [Google Scholar] [CrossRef]
- Chi, G.; Yi, D.; Jiang, B.; Yang, L.; Liu, H. Crack propagation during Charpy impact toughness testing of Ti−Al−V−Mo−Zr alloy tubes containing equiaxed and lamellar microstructures. J. Alloys Compd. 2021, 852, 156581. [Google Scholar] [CrossRef]
- Kobayashi, M.N.T. Fracture characteristics analysis related to the microstructures in titanium alloys. Mater. Sci. Eng. A 1996, 213, 16–24. [Google Scholar]
- Xu, J.; Zeng, W.; Zhao, Y.; Jia, Z. Effect of microstructure evolution of the lamellar alpha on impact toughness in a two-phase titanium alloy. Mater. Sci. Eng. A 2016, 676, 434–440. [Google Scholar] [CrossRef]
- Wang, S.; Huang, L.; Jiang, S.; Zhang, R.; Sun, F.; An, Q.; Geng, L. Multiplied bending ductility and toughness of titanium matrix composites by laminated structure manipulation. Mater. Des. 2021, 197, 109237. [Google Scholar] [CrossRef]
- Li, C.; Deng, X.; Li, Y.; Wang, Z. Adding Cr and Mo simultaneously enhances the strength and impact toughness of TiC microparticle-reinforced steel matrix composites at high temperatures. J. Alloys Compd. 2023, 931, 167531. [Google Scholar] [CrossRef]
- Zhao, Q.; Liang, Y.; Zhang, Z.; Li, X.; Ren, L. Study on the impact resistance of bionic layered composite of TiC-TiB2/Al from Al-Ti-B4C system. Materials 2016, 9, 708. [Google Scholar] [CrossRef]
Samples | Bending Strength (MPa) | Displace (mm) |
---|---|---|
15 vol.% B4C/6061Al | 780 | 1.0 |
7.5 vol.% B4C/6061Al | 750 | 1.9 |
6061Al | 662 | 3.3 |
Outside bending | 655 | 1.9 |
Side bending | 723 | 2.2 |
Inside bending | 677 | 3.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Chao, Z.; Jiang, L.; Han, H.; Han, B.; Du, S.; Luo, T.; Chen, G.; Mei, Y.; Wu, G. Influence of Interface on Mechanical Behavior of Al-B4C/Al Laminated Composites under Quasi-Static and Impact Loading. Materials 2023, 16, 6847. https://doi.org/10.3390/ma16216847
Zhang R, Chao Z, Jiang L, Han H, Han B, Du S, Luo T, Chen G, Mei Y, Wu G. Influence of Interface on Mechanical Behavior of Al-B4C/Al Laminated Composites under Quasi-Static and Impact Loading. Materials. 2023; 16(21):6847. https://doi.org/10.3390/ma16216847
Chicago/Turabian StyleZhang, Runwei, Zhenlong Chao, Longtao Jiang, Huimin Han, Bingzhuo Han, Shanqi Du, Tian Luo, Guoqin Chen, Yong Mei, and Gaohui Wu. 2023. "Influence of Interface on Mechanical Behavior of Al-B4C/Al Laminated Composites under Quasi-Static and Impact Loading" Materials 16, no. 21: 6847. https://doi.org/10.3390/ma16216847
APA StyleZhang, R., Chao, Z., Jiang, L., Han, H., Han, B., Du, S., Luo, T., Chen, G., Mei, Y., & Wu, G. (2023). Influence of Interface on Mechanical Behavior of Al-B4C/Al Laminated Composites under Quasi-Static and Impact Loading. Materials, 16(21), 6847. https://doi.org/10.3390/ma16216847