In Situ Observation the Effect of Y on the Solidification Process of 7Mo-SASS under a Low Cooling Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rare Earth Addition Experiment
2.2. High-Temperature Confocal Laser Scanning Microscope Experiment
3. Results and Discussion
3.1. Effect of Y on the Solidification Process of 7Mo SASS
3.2. Effect of Y Addition on the Nucleation Process in 7MoSASS
3.3. Effect of Y on the Solidification Kinetics of 7MoSASS
3.4. Effect of Y on Element Segregation
4. Conclusions
- (1)
- Under low cooling rates (10 °C/min), the presence of Y can elevate the initial nucleation temperature and widen the solidification temperature range. Compared to 7MoSASS, the Y sample shows an increase of approximately 149.53/mm2 in austenite nucleation sites. The addition of Y is beneficial for improving the uniformity of the solidification microstructure.
- (2)
- YAlO3 has a smaller lattice disregistry value with austenite, making it a suitable heterogeneous nucleation core for promoting the early nucleation of austenite. Moreover, during the final stages of solidification, Y tends to enrich to a greater extent, providing a higher degree of undercooling and promoting grain refinement in the solidification process.
- (3)
- In 7MoSASS, the nucleation mechanism is primarily saturation site nucleation. However, with the addition of Y, a transition in the nucleation mechanism occurs at a solidification fraction of 50%, shifting from saturation site nucleation to a combination of saturation site nucleation + Avrami nucleation. The number of austenite nucleation sites in the Y sample exhibited increments of 34.48/mm2.
- (4)
- The addition of Y resulted in a significant refinement of the solidification microstructure of 7MoSASS, with the proportion of precipitated phases decreasing by approximately 7.5% and exhibiting a reticular structure. Cr and Mo were the main elements exhibiting positive segregation in 7MoSASS.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Lu, B. Requirement Analysis of High-End Manufacturing Equipment with a Focus on the High-End Equipment Manufacturing Industry. Chin. J. Eng. Sci. 2017, 19, 136–141. [Google Scholar]
- Wang, T.; Phelan, D.; Wexler, D.; Yin, Y.; Guo, L.; Zhang, C.; Li, H. Detailed analysis of nucleation and subsequent δ to γ phase transformation of a high N super austenitic stainless steel. Mater. Charact. 2023, 195, 112485. [Google Scholar] [CrossRef]
- Wallen, B.; Liljas, M.; Stenvall, P. AVESTA 654 SMO™—A new nitrogen-enhanced superaustenitic stainless steel. Mater. Corros. 1993, 44, 83–88. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Jiang, Z.; Zhang, B.; Li, Z.; Wu, J.; Feng, H.; Zhu, H.; Duan, F. Chloride- and sulphate-induced hot corrosion mechanism of super austenitic stainless steel S31254 under dry gas environment. Corros. Sci. 2020, 163, 108295. [Google Scholar] [CrossRef]
- Li, H.; Yang, C.; Zhou, E.; Yang, C.; Feng, H.; Jiang, Z.; Xu, D.; Gu, T.; Yang, K. Microbiologically influenced corrosion behavior of S32654 super austenitic stainless steel in the presence of marine Pseudomonas aeruginosa biofilm. J. Mater. Sci. Technol. 2017, 33, 1596–1603. [Google Scholar] [CrossRef]
- Li, H.; Zhang, B.; Jiang, Z.; Zhang, S.; Feng, H.; Han, P.; Dong, N.; Zhang, W.; Li, G.; Fan, G.; et al. A new insight into high-temperature oxidation mechanism of super-austenitic stainless steel S32654 in air. J. Alloys Compd. 2016, 686, 326–338. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, Z.; Li, H.; Zhang, B.; Fan, S.; Li, Z.; Feng, H.; Zhu, H. Precipitation behavior and phase transformation mechanism of super austenitic stainless steel S32654 during isothermal aging. Mater. Charact. 2018, 137, 244–255. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, S.; Li, H.; Jiang, Z.; Feng, H.; Xu, P.; Han, P. Influence mechanism of boron segregation on the microstructure evolution and hot ductility of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 112, 184–194. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Jiang, Z.; Li, Z.; Wu, J.; Zhang, B.; Duan, F.; Feng, H.; Zhu, H. Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2020, 42, 143–155. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Jiang, Z.; Zhang, B.; Li, Z.; Wu, J.; Fan, S.; Feng, H.; Zhu, H. Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of superaustenitic stainless steel S32654. Mater. Charact. 2019, 152, 141–150. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y.; Zhang, W.; Zhao, A. Precipitation mechanism of σ phase in S32654 super austenitic stainless steel. Mater. Lett. 2023, 349, 134834. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Zeng, L.; Liang, J.; Xiao, J.; Zhao, A. Segregation behavior and precipitated phases of super-austenitic stainless steel influenced by electromagnetic stirring. Mater. Today Commun. 2022, 31, 103675. [Google Scholar] [CrossRef]
- Yuan, T.; Kou, S.; Luo, Z. Grain refining by ultrasonic stirring of the weld pool. Acta Mater. 2016, 106, 144–154. [Google Scholar] [CrossRef]
- Smirnov, L.A.; Rovnushkin, V.A.; Oryshchenko, A.S.; Kalinin, G.Y.; Milyuts, V.G. Modification of Steel and Alloys with Rare-Earth Elements. Part 1. Metallurgist 2016, 59, 1053–1061. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.-r.; Wang, L.-z.; Xiong, X.-q.; Chen, L. Effect of yttrium treatment on alumina inclusions in high carbon steel. J. Iron Steel Res. Int. 2021, 29, 655–664. [Google Scholar] [CrossRef]
- Tuttle, R.B. Study of Rare Earth Additions Effect on the Solidification and Properties of 4130 Steel. J. Mater. Eng. Perform. 2019, 28, 6720–6727. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.J.; Liu, Y.Q.; Chou, K.C. Using Ce to modify inclusion in spring steel. J. Min. Metall. Sect. B Metall. 2017, 53, 365–372. [Google Scholar] [CrossRef]
- Kilbourn, B.T. Metallurgical applications of yttrium and the lanthanides. JOM 1988, 40, 22–25. [Google Scholar] [CrossRef]
- Chen, L.; Ma, X.; Wang, L.; Ye, X. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr–11Ni austenitic heat-resistant stainless steel. Mater. Des. 2011, 32, 2206–2212. [Google Scholar] [CrossRef]
- Xie, J.; Zhang, J.; You, Z.; Liu, S.; Guan, K.; Wu, R.; Wang, J.; Feng, J. Towards developing Mg alloys with simultaneously improved strength and corrosion resistance via RE alloying. J. Magnes. Alloys 2021, 9, 41–56. [Google Scholar] [CrossRef]
- Liu, C.; Revilla, R.I.; Liu, Z.; Zhang, D.; Li, X.; Terryn, H. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros. Sci. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Wang, C.; Ma, R.; Zhou, Y.; Liu, Y.; Daniel, E.F.; Li, X.; Wang, P.; Dong, J.; Ke, W. Effects of rare earth modifying inclusions on the pitting corrosion of 13Cr4Ni martensitic stainless steel. J. Mater. Sci. Technol. 2021, 93, 232–243. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Zhou, S.; Wang, X. Effects of rare earth addition on microstructure and mechanical properties of a Fe–15Mn–1.5Al–0.6C TWIP steel. Mater. Sci. Eng. A 2014, 608, 106–113. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Z.; He, J.; Zhu, F.; Li, C. Effects of Rare Earth Elements on Microstructure and Mechanical Properties of H13 Die Steel. Metals 2020, 10, 918. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, J.; Li, H.; Jiang, Z.; Geng, Y.; Feng, H.; Zhang, B.; Zhu, H. Refinement mechanism of cerium addition on solidification structure and sigma phase of super austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 102, 105–114. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Jiang, Z.; Feng, H.; Wen, Z.; Ren, J.; Han, P. Unveiling the mechanism of yttrium significantly improving high-temperature oxidation resistance of super-austenitic stainless steel S32654. J. Mater. Sci. Technol. 2022, 115, 103–114. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Sun, Y.; Zhao, A.; Zhang, W.; Li, J.; Dong, H.; Chou, K. The influence of Ce micro-alloying on the precipitation of intermetallic sigma phase during solidification of super-austenitic stainless steels. J. Alloys Compd. 2020, 815, 152418. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.; Hu, X.; Lv, B.; Chen, C.; Zhang, F. Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo–0.46N–0.02Ce: Effect of the solidification direction orientation of columnar crystal to loading direction. J. Mater. Res. Technol. 2021, 13, 618–634. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, L.; Zhang, W.; Li, J.; Chou, K. Effect of Cerium on the Austenitic Nucleation and Growth of High-Mo Austenitic Stainless Steel. Metall. Mater. Trans. B 2020, 51, 1773–1783. [Google Scholar] [CrossRef]
- Mao, G.; Yan, H.; Zhu, C.; Wu, Z.; Gao, W. The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al–Si alloy under conditions of different cooling rates. J. Alloys Compd. 2019, 806, 909–916. [Google Scholar] [CrossRef]
- Li, B.; Wang, H.; Jie, J.; Wei, Z. Microstructure evolution and modification mechanism of the ytterbium modified Al–7.5%Si–0.45%Mg alloys. J. Alloys Compd. 2011, 509, 3387–3392. [Google Scholar] [CrossRef]
- Hao, Y.S.; Li, J.; Li, X.; Liu, W.C.; Cao, G.M.; Li, C.G.; Liu, Z.Y. Influences of cooling rates on solidification and segregation characteristics of Fe-Cr-Ni-Mo-N super austenitic stainless steel. J. Mater. Process. Technol. 2020, 275, 116326. [Google Scholar] [CrossRef]
- Li, Y.; Zou, D.; Chen, W.; Zhang, Y.; Zhang, W.; Xu, F. Effect of Cooling Rate on Solidification and Segregation Characteristics of 904L Super Austenitic Stainless Steel. Met. Mater. Int. 2021, 28, 1907–1918. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Wang, Z.; Bao, E. Influence of rare earth elements on solidification behavior of a high speed steel for roll using differential scanning calorimetry. J. Rare Earths 2011, 29, 1089–1094. [Google Scholar] [CrossRef]
- Li, Y.; Zou, D.; Li, M.; Tong, L.; Zhang, Y.; Zhang, W. Effect of cooling rate on segregation characteristics of 254SMO super austenitic stainless steel and pitting corrosion resistance under simulated flue gas desulfurization environment. J. Mater. Sci. 2023, 58, 4137–4149. [Google Scholar] [CrossRef]
- Zhang, R.; He, J.; Xu, S.; Zhang, F.; Wang, X. The roles of Ce and Mn on solidification behaviors and mechanical properties of 7Mo super austenitic stainless steel. J. Mater. Res. Technol. 2023, 22, 1238–1249. [Google Scholar] [CrossRef]
- Larson, M.G. Analysis of variance. Circulation 2008, 117, 115–121. [Google Scholar] [CrossRef]
- Feifei, H.; Bo, L.; Da, L.; Ting, D.; Xuejun, R.; Qingxiang, Y.; Ligang, L. Effects of rare earth oxide on hardfacing metal microstructure of medium carbon steel and its refinement mechanism. J. Rare Earths 2011, 29, 609–613. [Google Scholar]
- Zhang, Y.; Xiao, J.; Liang, J.; Pei, W.; Liu, P.; Zhang, W.; Zhao, A. Effect of rare earth elements on the segregation behavior and microstructure of super austenitic stainless steel. J. Mater. Res. Technol. 2022, 19, 20–29. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, F.; Yan, Q.; Zhang, X.; Hong, Z. Microstructure characteristics of 12Cr ferritic/martensitic steels with various yttrium additions. J. Rare Earths 2019, 37, 547–554. [Google Scholar] [CrossRef]
- Bramfitt, B.L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1970, 1, 1987–1995. [Google Scholar] [CrossRef]
- Blázquez, J.; Conde, C.; Conde, A. On the use of classical JMAK crystallization kinetic theory to describe simultaneous processes leading to the formation of different phases in metals. Int. J. Therm. Sci. 2015, 88, 1–6. [Google Scholar] [CrossRef]
- Lei, X.; Huang, J.; Jin, X.; Chen, S.; Zhao, X. Application of Johnson-Mehl-Avrami-Kolmogorov type equation in non-isothermal phase process: Re-discussion. Mater. Lett. 2016, 181, 240–243. [Google Scholar] [CrossRef]
- Liu, F.; Sommer, F.; Mittemeijer, E.J. Analysis of the kinetics of phase transformations; roles of nucleation index and temperature dependent site saturation, and recipes for the extraction of kinetic parameters. J. Mater. Sci. 2006, 42, 573–587. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Cr | Ni | Mo | Cu | N | Al | Y | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
7MoSASS | 0.01 | 0.03 | 5.92 | 0.004 | 0.004 | 23.93 | 19.21 | 7.12 | 0.43 | 0.48 | 0.006 | -- |
7MoSASS-Y | 0.01 | 0.03 | 6.13 | 0.006 | 0.003 | 23.96 | 19.17 | 7.16 | 0.43 | 0.47 | 0.008 | 0.016 |
10 °C/min | Tn (°C) | Grain Density/mm2 | v = (g(10) − g(2))/8 | |
---|---|---|---|---|
2 s | 10 s | |||
7MoSASS | 1367.2 | 4.30 | 21.52 | 2.15 |
7MoSASS-Y | 1381.6 | 30.13 | 171.05 | 17.61 |
dmin/μm | dmax/μm | daverage/μm | α | |
---|---|---|---|---|
None | 30.24 | 143.57 | 71.41 | 26.34 |
Y | 27.18 | 106.39 | 65.07 | 20.01 |
k | n | R2 | |
---|---|---|---|
7MoSASS | 1.15 × 10−4 | 2.50 ± 0.07 | 0.99 |
7MoSASS-Y | 5.13 × 10−4 | 1.78 ± 0.09 | 0.98 |
5.91 × 10−7 | 3.56 ± 0.19 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, L.; Wang, Q. In Situ Observation the Effect of Y on the Solidification Process of 7Mo-SASS under a Low Cooling Rate. Materials 2023, 16, 6846. https://doi.org/10.3390/ma16216846
Liu W, Wang L, Wang Q. In Situ Observation the Effect of Y on the Solidification Process of 7Mo-SASS under a Low Cooling Rate. Materials. 2023; 16(21):6846. https://doi.org/10.3390/ma16216846
Chicago/Turabian StyleLiu, Wenqiang, Lijun Wang, and Qi Wang. 2023. "In Situ Observation the Effect of Y on the Solidification Process of 7Mo-SASS under a Low Cooling Rate" Materials 16, no. 21: 6846. https://doi.org/10.3390/ma16216846
APA StyleLiu, W., Wang, L., & Wang, Q. (2023). In Situ Observation the Effect of Y on the Solidification Process of 7Mo-SASS under a Low Cooling Rate. Materials, 16(21), 6846. https://doi.org/10.3390/ma16216846