Intrinsic Properties Affecting the Catalytic Activity toward Oxygen Reduction Reaction of Nanostructured Transition Metal Nitrides as Catalysts for Hybrid Na-Air Batteries
Abstract
:1. Introduction
2. Experimental Methods
2.1. Preparation of TMN NPs
2.2. The Cyclic Voltammogram (CV) and Linear Sweep Voltammetry (LSV) Performance Test
2.3. Alkali Leaching Experiment
2.4. Preparation of Air Electrode
2.5. Assembly of HSABs
2.6. Electrochemical Performance Test
2.7. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Da, Z.; Hua-Ping, Z.; Feng, L.; Wen-Hui, M.; Yong, L. Nanostructured arrays for metal-ion battery and metal-air battery applications. J. Power Sources 2021, 493, 229722. [Google Scholar]
- Yang, X.; Su, F.; Hou, M.; Zhang, D.; Dai, Y.; Liang, F. Plasma tailored reactive nitrogen species in MOF derived carbon materials for hybrid sodium–air batteries. Dalton Trans. 2021, 50, 7041–7047. [Google Scholar] [CrossRef]
- Yang, X.; Peng, C.; Hou, M.; Zhang, D.; Yang, B.; Xue, D.; Lei, Y.; Liang, F. Rational design of electrolyte solvation structures for modulating 2e−/4e− transfer in sodium–air batteries. Adv. Funct. Mater. 2022, 32, 2201258. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, T.; Ge, J.; Wu, C. Recent advances on the modulation of electrocatalysts based on transition metal nitrides for the rechargeable Zn-air battery. ACS Mater. Lett. 2020, 2, 1423–1434. [Google Scholar] [CrossRef]
- Dong, S.; Chen, X.; Zhang, X.; Cui, G. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946–1956. [Google Scholar] [CrossRef]
- Balogun, M.S.; Huang, Y.; Qiu, W.; Yang, H.; Ji, H.; Tong, Y. Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 2017, 20, 425–451. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Adimi, S.; Shen, H.; Thomas, T.; Ma, R.; Attfield, A.P.; Yang, M. Zirconium nitride catalysts surpass platinum for oxygen reduction. Nat. Mater. 2020, 19, 282–286. [Google Scholar] [CrossRef] [PubMed]
- Kreider, M.E.; Gallo, A.; Back, S.; Liu, Y.; Siahrostami, S.; Nordlund, D.; Sinclair, R.; Norskov, J.K.; King, L.A.; Jaramillo, T.F. Precious metal-free nickel nitride catalyst for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 26863–26871. [Google Scholar] [CrossRef]
- Sun, J.; Wang, N.; Qiu, Z.; Xing, L.; Du, L. Recent progress of non-noble metal catalysts for oxygen electrode in Zn-air batteries: A mini review. Catalysts 2022, 12, 843. [Google Scholar] [CrossRef]
- Du, Q.; Gong, Y.; Khan, M.A.; Ye, D.; Fang, J.; Zhao, H.; Zhang, J. Regulating non-precious transition metal nitrides bifunctional electrocatalysts through surface/interface nanoengineering for air-cathodes of Zn-air batteries. Green Energy Environ. 2022, 7, 16–34. [Google Scholar] [CrossRef]
- Wu, H.; Chen, W. Copper nitride nanocubes: Size-controlled synthesis and application as cathode catalyst in alkaline fuel cells. J. Am. Chem. Soc. 2011, 133, 15236–15239. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, L.; Chen, X.; He, X.; Wang, X.; Dong, S.; Gu, L.; Liu, Z.; Huang, C.; Cui, G. Molybdenum nitride/N-doped carbon nanospheres for lithium-O2 battery cathode electrocatalyst. ACS Appl. Mater. Interfaces 2013, 5, 3677–3682. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wu, Y.; Liu, M.; Li, J. Electrocatalysis on shape-controlled titanium nitride nanocrystals for the oxygen reduction reaction. ChemSusChem 2013, 6, 2016–2021. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Qiao, X.; Jin, J.; Tian, X.; Fan, H.; Yu, D.; Wang, W.; Liao, S.; Yu, N.; Deng, Y. A strategy to unlock the potential of CrN as a highly active oxygen reduction reaction catalyst. J. Mater. Chem. A 2020, 8, 8575–8585. [Google Scholar] [CrossRef]
- Deno, H.; Kamemoto, T.; Nemoto, S.; Koshio, A.; Kokai, F. Formation of TiN-Ir particle films using pulsed-laser deposition and their electrolytic properties in producing hypochlorous acid. Appl. Surf. Sci. 2008, 254, 2776–2782. [Google Scholar] [CrossRef]
- Song, X.; Jiang, X.; Paul, M.; Zong-Han, X. Nanoporosity improves the damage tolerance of nanostructured tantalum nitride coatings. Scr. Mater. 2017, 133, 86–91. [Google Scholar]
- Soo Kang, J.; Park, M.A.; Kim, J.Y.; Ha Park, S.; Young Chung, D.; Yu, S.H.; Kim, J.; Park, J.; Choi, J.-W.; Lee, K.J.; et al. Reactively sputtered nickel nitride as electrocatalytic counter electrode for dye-and quantum dot-sensitized solar cells. Sci. Rep. 2015, 5, 10450. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Y.; Gao, S.; Tu, M. Evolution of phase and microstructure during carbothermal reduction-nitridation synthesis of Ti (C, N). Mater. Charact. 2008, 59, 241–244. [Google Scholar] [CrossRef]
- Giordano, C.; Erpen, C.; Yao, W.; Antonietti, M. Synthesis of Mo and W carbide and nitride nanoparticles via a simple “Urea Glass” route. Nano Lett. 2008, 8, 4659–4663. [Google Scholar] [CrossRef]
- Choi, D.; Kumta, P.N. Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides. J. Am. Ceram. Soc. 2007, 90, 3113–3120. [Google Scholar] [CrossRef]
- Zhang, D.; Mylsamy, G.; Yang, X.; Xie, Z.; Su, X.; Liang, F.; Yang, B.; Dai, Y. High purity and good dispersity AlN nanoparticles synthesized by an arc discharge with assistance of direct nitridation. Ceram. Int. 2021, 47, 16972–16979. [Google Scholar] [CrossRef]
- Hou, M.; Liang, F.; Chen, K.; Dai, Y.; Xue, D. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology 2020, 31, 132003. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, K.; Zhang, D.; Chang, S.; Liang, F.; Yan, P.; Yao, Y.; Qu, T.; Zhan, J.; Ma, W.; et al. Reversible hybrid sodium-CO2 batteries with low charging voltage and long-life. Nano Energy 2020, 68, 104318. [Google Scholar] [CrossRef]
- Liu, M.; Dong, Y.; Wu, Y.; Feng, H.; Li, J. Titanium nitride nanocrystals on nitrogen-doped graphene as an efficient electrocatalyst for oxygen reduction reaction. Chem.-A Eur. J. 2013, 19, 14781–14786. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Y.; Sun, Y.; Tan, Y.; Xu, F.M.; Shi, X.L.; Ren, N. Zirconium nitride (ZrN) fibers prepared by carbothermal reduction and nitridation of electrospun PVP/zirconium oxychloride composite fibers. Chem. Eng. J. 2008, 144, 149–152. [Google Scholar] [CrossRef]
- Purdy, A.P.; Sorber, R.; Epshteyn, A.; Pettigrew, K.A.; Miller, J.B. The synthesis of hafnium nanomaterials by alkali metal reduction of hafnium tetrachloride. J. Nanoparticle Res. 2011, 13, 5435–5448. [Google Scholar] [CrossRef]
- Ohgi, Y.; Ishihara, A.; Matsuzawa, K.; Mitsushima, S.; Ota, K.I.; Matsumoto, M.; Imai, H. Factors for improvements of catalytic activity of zirconium oxide-based oxygen-reduction electrocatalysts. J. Electrochem. Soc. 2012, 160, f162–f167. [Google Scholar] [CrossRef]
- Kaneko, K.; Kitawaki, K.; Sadayama, S.; Razavi, H.; Hernandez-Garrido, J.C.; Midgley, P.A.; Okuyama, H.; Uda, M.; Sakka, Y. Fabrication and characterization of TiN nanocomposite powders fabricated by DC arc-Plasma method. J. Alloys Compd. 2010, 492, 685–690. [Google Scholar] [CrossRef]
- Tavares, J.; Coulombe, S.; Meunier, J.-L. Synthesis of cubic-structured monocrystalline titanium nitride nanoparticles by means of a dual plasma process. J. Phys. D Appl. Phys. 2009, 42, 102001. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, C.; Yu, C.; Ding, J.; Zhu, H. Molten-salt nitridation synthesis of cubic ZrN nanopowders at low temperature via magnesium thermal reduction. Ceram. Int. 2018, 44, 8710–8715. [Google Scholar] [CrossRef]
- Reddy, R.; Sugunakar, K.M.; Kamachi Mudali, U.; Chakravarthy, S.R.; Sarathi, R. Generation and characterization of zirconium nitride nanoparticles by wire explosion process. Ceram. Int. 2012, 38, 5507–5512. [Google Scholar] [CrossRef]
- Zerr, A.; Miehe, G.; Riedel, R. Synthesis of cubic zirconium and hafnium nitride having Th3P4 structure. Nat. Mater. 2003, 2, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, X.; Gu, Z.; Huang, H.; Zhang, S.; Fan, X.; Zhang, W.; Wei, Q.; Zheng, W. Negative effect of vacancies on cubic symmetry, hardness and conductivity in hafnium nitride films. Scr. Mater. 2015, 108, 141–146. [Google Scholar] [CrossRef]
- Sievers, G.W.; Jensen, A.W.; Quinson, J.; Zana, A.; Bizzotto, F.; Oezaslan, M.; Dworzak, A.; Kirkensgaard, J.J.K.; Smitshuysen, T.E.L.; Kadkhodazadeh, S.; et al. Self-supported Pt-CoO networks combining high specific activity with high surface area for oxygen reduction. Nat. Mater. 2021, 20, 208–213. [Google Scholar] [CrossRef]
- Cui, Z.; Zu, C.; Zhou, W.; Manthiram, A.; Goodenough, J.B. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries. Adv. Mater. 2016, 28, 6926–6931. [Google Scholar] [CrossRef]
- Balogun, M.S.; Yu, M.; Li, C.; Zhai, T.; Liu, Y.; Lu, X.; Tong, Y. Facile synthesis of titanium nitride nanowires on carbon fabric for flexible and high-rate lithium ion batteries. J. Mater. Chem. A 2014, 2, 10825–10829. [Google Scholar] [CrossRef]
- Cinali, M.B.; Coşkun, Ö.D. Improved infrared emissivity of diamond-like carbon sandwich structure with titanium nitride metallic interlayer. Sol. Energy 2020, 204, 644–653. [Google Scholar] [CrossRef]
- Matsuoka, M.; Isotani, S.; Miyake, S.; Setsuhara, Y.; Ogata, K.; Kuratani, N. Effects of ion energy and arrival rate on the composition of zirconium oxide films prepared by ion-beam assisted deposition. J. Appl. Phys. 1996, 80, 1177–1181. [Google Scholar] [CrossRef]
- Exarhos, S.; Alvarez-Barragan, A.; Aytan, E.; Balandin, A.A.; Mangolini, L. Plasmonic core-shell zirconium nitride-silicon oxynitride nanoparticles. ACS Energy Lett. 2018, 3, 2349–2356. [Google Scholar] [CrossRef]
- Ishihara, A.; Nagai, T.; Ukita, K.; Arao, M.; Matsumoto, M.; Yu, L.; Nakamura, T.; Sekizawa, O.; Takagi, Y.; Matsuzawa, K.; et al. Emergence of oxygen reduction activity in zirconium oxide-based compounds in acidic media: Creation of active sites for the oxygen reduction reaction. J. Phys. Chem. C 2019, 123, 18150–18159. [Google Scholar] [CrossRef]
- Defilippi, C.; Shinde, D.V.; Dang, Z.; Manna, L.; Hardacre, C.; Greer, A.J.; D’Agostino, C.; Giordano, C. HfN nanoparticles: An unexplored catalyst for the electrocatalytic oxygen evolution reaction. Angew. Chem. 2019, 58, 15464–15470. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.; Hu, C.; Huang, H.; Zhang, S.; Fan, X.; Wang, X.; Zheng, W. Identification and thermodynamic mechanism of the phase transition in hafnium nitride films. Acta Mater. 2015, 90, 59–68. [Google Scholar] [CrossRef]
- Jung, J.W.; Kim, G.Y.; Lee, N.W.; Ryu, W.H. Low-temperature synthesis of tetragonal phase of hafnium oxide using polymer-blended nanofiber precursor. Appl. Surf. Sci. 2020, 533, 147496. [Google Scholar] [CrossRef]
- Yang, X.-F.; Zhao, F.; Yeh, Y.-W.; Selinsky, R.S.; Chen, Z.; Yao, N.; Tully, C.G.; Ju, Y.-G.; Koel, B.E. Nitrogen-plasma treated hafnium oxyhydroxide as an efficient acid-stable electrocatalyst for hydrogen evolution and oxidation reactions. Nat. Commun. 2019, 10, 1543. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, R.; Xiong, Y.; DiSalvo, F.J.; Abruña, H.D. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2019, 141, 19241–19245. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, A.; Doi, S.; Mitsushima, S.; Ota, K.I. Tantalum (oxy) nitrides prepared using reactive sputtering for new nonplatinum cathodes of polymer electrolyte fuel cell. Electrochim. Acta 2008, 53, 5442–5450. [Google Scholar] [CrossRef]
- Kreider, M.E.; Stevens, M.; Liu, Y.-Z.; Patel, A.M.; Statt, M.J.; Gibbons, B.M.; Gallo, A.; Ben-Naim, M.; Mehta, A.; Davis, R.C.; et al. Nitride or oxynitride? Elucidating the composition-activity relationships in molybdenum nitride electrocatalysts for the oxygen reduction reaction. Chem. Mater. 2020, 32, 2946–2960. [Google Scholar] [CrossRef]
- Chisaka, M.; Ando, Y.; Itagaki, N. Activity and durability of the oxygen reduction reaction in a nitrogen-doped rutile-shell on TiN-core nanocatalysts synthesised via solution-phase combustion. J. Mater. Chem. A 2016, 4, 2501–2508. [Google Scholar] [CrossRef]
- Wei, A.; Jian, J.; Zhu, J.-H.; Fan, Z.-X.; Wang, Y.-L.; Zhang, H.; Huang, W.; Yu, T. Supramolecular polymerization promoted in situ fabrication of nitrogen-doped porous graphene sheets as anode materials for Li-ion batteries. Adv. Energy Mater. 2015, 5, 4799–4851. [Google Scholar]
- Zhu, J.-Y.; Qu, T.; Su, F.-M.; Wu, Y.-Q.; Kang, Y.; Chen, K.-F.; Yao, Y.-C.; Ma, W.-H.; Yang, B.; Dai, Y.-N.; et al. Highly dispersed Co nanoparticles decorated on a N-doped defective carbon nano-framework for a hybrid Na-air battery. Dalton Trans. 2020, 49, 1811–1821. [Google Scholar] [CrossRef]
- Rizwan, H.; Wen, Y.-C.; Ma, Z.-F.; Wilkinson, D.P.; Zhang, L.; Yuan, X.-X.; Song, S.-Q.; Zhang, J.-J. High temperature proton exchange membrane fuel cells: Progress in advanced materials and key technologies. Chem. Soc. Rev. 2021, 50, 1138–1187. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Zhang, K.; Xie, Z.; Xu, B.; Hou, M.; Lei, Y.; Watanabe, T.; Yang, B.; Liang, F. Intrinsic Properties Affecting the Catalytic Activity toward Oxygen Reduction Reaction of Nanostructured Transition Metal Nitrides as Catalysts for Hybrid Na-Air Batteries. Materials 2023, 16, 7469. https://doi.org/10.3390/ma16237469
Zhang D, Zhang K, Xie Z, Xu B, Hou M, Lei Y, Watanabe T, Yang B, Liang F. Intrinsic Properties Affecting the Catalytic Activity toward Oxygen Reduction Reaction of Nanostructured Transition Metal Nitrides as Catalysts for Hybrid Na-Air Batteries. Materials. 2023; 16(23):7469. https://doi.org/10.3390/ma16237469
Chicago/Turabian StyleZhang, Da, Kaiwen Zhang, Zhipeng Xie, Bowen Xu, Minjie Hou, Yong Lei, Takayuki Watanabe, Bin Yang, and Feng Liang. 2023. "Intrinsic Properties Affecting the Catalytic Activity toward Oxygen Reduction Reaction of Nanostructured Transition Metal Nitrides as Catalysts for Hybrid Na-Air Batteries" Materials 16, no. 23: 7469. https://doi.org/10.3390/ma16237469
APA StyleZhang, D., Zhang, K., Xie, Z., Xu, B., Hou, M., Lei, Y., Watanabe, T., Yang, B., & Liang, F. (2023). Intrinsic Properties Affecting the Catalytic Activity toward Oxygen Reduction Reaction of Nanostructured Transition Metal Nitrides as Catalysts for Hybrid Na-Air Batteries. Materials, 16(23), 7469. https://doi.org/10.3390/ma16237469