Evaluation of Self-Healing Properties of OPC-Slag Cement Immersed in Seawater Using UPV Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Healing Experiments
3. Results
3.1. UPV Measurements
3.2. SEM and EDS Analyses
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vantadori, S.; Carpinteri, A.; Guo, L.-P.; Ronchei, C.; Zanichelli, A. Synergy assessment of hybrid reinforcements in concrete. Compos. Part B Eng. 2018, 147, 197–206. [Google Scholar] [CrossRef]
- Xue, C. Performance and mechanisms of stimulated self-healing in cement-based composites exposed to saline environments. Cem. Concr. Compos. 2022, 129, 104470. [Google Scholar] [CrossRef]
- Mohamed, A.; Zhou, Y.; Bertolesi, E.; Liu, M.; Liao, F.; Fan, M. Factors influencing self-healing mechanisms of cementitious materials: A review. Constr. Build. Mater. 2023, 393, 131550. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Q.; Ashour, A.; Han, B. Self-healing cement concrete composites for resilient infrastructures: A review. Compos. Part B Eng. 2020, 189, 107892. [Google Scholar] [CrossRef]
- Hermawan, H.; Wiktor, V.; Gruyaert, E.; Serna, P. Optimization of concrete mix designs toward the bond properties of steel reinforcement in self-healing concrete by Taguchi method. J. Build. Eng. 2023, 76, 107294. [Google Scholar] [CrossRef]
- Hilloulin, B.; Van Tittelboom, K.; Gruyaert, E.; De Belie, N.; Loukili, A. Design of polymeric capsules for self-healing concrete. Cem. Concr. Compos. 2015, 55, 298–307. [Google Scholar] [CrossRef]
- Li, X.; Liu, R.; Li, S.; Zhang, C.; Yan, J.; Liu, Y.; Sun, X.; Su, P. Properties and mechanism of self-healing cement paste containing microcapsule under different curing conditions. Constr. Build. Mater. 2022, 357, 107294. [Google Scholar] [CrossRef]
- Doostkami, H.; Cumberbatch, J.d.J.E.; Formagini, S.; Serna, P.; Roig-Flores, M. Self-healing capability of conventional, high-performance, and Ultra High-Performance Concrete with commercial bacteria characterized by means of water and chloride penetration. Constr. Build. Mater. 2023, 401, 132903. [Google Scholar] [CrossRef]
- Xiao, X.; Ho, D.S.; Yang, E.-H. The use of low alkalinity MgO-SiO2 formulation to encapsulate bacteria for self-healing concrete. Constr. Build. Mater. 2023, 401, 1137–1142. [Google Scholar] [CrossRef]
- Zhong, W.; Yao, W. Influence of damage degree on self-healing of concrete. Constr. Build. Mater. 2008, 22, 1137–1142. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, Y.; Yao, Y. Autogenous self-healing of engineered cementitious composites under freeze–thaw cycles. Constr. Build. Mater. 2012, 34, 522–530. [Google Scholar] [CrossRef]
- Şahmaran, M.; Keskin, S.B.; Ozerkan, G.; Yaman, I.O. Self-healing of mechanically-loaded self consolidating concretes with high volumes of fly ash. Cem. Concr. Compos. 2008, 30, 872–879. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; Gruyaert, E.; Rahier, H.; De Belie, N. Influence of mix composition on the extent of autogenous crack healing by continued hydration or calcium carbonate formation. Constr. Build. Mater. 2012, 37, 349–359. [Google Scholar] [CrossRef]
- Maes, M.; Snoeck, D.; De Belie, N. Chloride penetration in cracked mortar and the influence of autogenous crack healing. Constr. Build. Mater. 2016, 115, 114–124. [Google Scholar] [CrossRef]
- Zokaei, S.; Siad, H.; Lachemi, M.; Mahmoodi, O.; Şahmaran, M. Self-healing capability of engineered cementitious composites with calcium aluminate cement. Constr. Build. Mater. 2023, 403, 133051. [Google Scholar] [CrossRef]
- Aspiotis, K.; Sotiriadis, K.; Ntaska, A.; Mácová, P.; Badogiannis, E.; Tsivilis, S. Durability assessment of self-healing in ordinary Portland cement concrete containing chemical additives. Constr. Build. Mater. 2021, 305, 124754. [Google Scholar] [CrossRef]
- Sun, J.; Kong, K.H.; Lye, C.Q.; Quek, S.T. Effect of ground granulated blast furnace slag on cement hydration and autogenous healing of concrete. Constr. Build. Mater. 2022, 315, 125365. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Z.; Ahmed, A.H.; Liebscher, M.; Zhu, X.; Mechtcherine, V. Self-healing behavior of high-strength strain-hardening cement-based composites (HS-SHCC) blended with limestone calcined clay cement (LC3). Constr. Build. Mater. 2023, 370, 130633. [Google Scholar] [CrossRef]
- Azarsa, P.; Gupta, R.; Biparva, A. Assessment of self-healing and durability parameters of concretes incorporating crystalline admixtures and Portland Limestone Cement. Cem. Concr. Compos. 2019, 99, 17–31. [Google Scholar] [CrossRef]
- Su, Y.; Zheng, T.; Qian, C. Application potential of Bacillus megaterium encapsulated by low alkaline sulphoaluminate cement in self-healing concrete. Constr. Build. Mater. 2021, 273, 121740. [Google Scholar] [CrossRef]
- Fu, C.; Zhan, Q.; Zhang, X.; Zhou, J.; Wu, Y.; Li, X.; Zhou, P.; Xu, G. Self-healing properties of cement-based materials in different matrix based on microbial mineralization coupled with bimetallic hydroxide. Constr. Build. Mater. 2023, 400, 132686. [Google Scholar] [CrossRef]
- Pinto, A.; González-Fonteboa, B.; Seara-Paz, S.; Martínez-Abella, F. Effects of bacteria-based self-healing nutrients on hydration and rheology of cement pastes. Constr. Build. Mater. 2023, 404, 133142. [Google Scholar] [CrossRef]
- Sarkar, M.; Maiti, M.; Xu, S.; Mandal, S. Bio-concrete: Unveiling self-healing properties beyond crack-sealing. J. Build. Eng. 2023, 74, 106888. [Google Scholar] [CrossRef]
- Xiao, X.; Unluer, C.; Chu, S.; Yang, E.-H. Single bacteria spore encapsulation through layer-by-layer self-assembly of poly(dimethyldiallyl ammonium chloride) and silica nanoparticles for self-healing concrete. Cem. Concr. Compos. 2023, 140, 105105. [Google Scholar] [CrossRef]
- Lee, Y.-S.; Ryou, J.-S. Self healing behavior for crack closing of expansive agent via granulation/film coating method. Constr. Build. Mater. 2014, 71, 188–193. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E. Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr. Build. Mater. 2013, 42, 217–224. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 2012, 34, 566–574. [Google Scholar] [CrossRef]
- Alatawna, A.; Rahamim, Y.; Hartig, C.; Peled, A.; Regev, O. Self-healing of the textile-reinforced concrete: Additives and coatings. Constr. Build. Mater. 2023, 364, 129930. [Google Scholar] [CrossRef]
- Jeon, S.; Hossain, M.S.; Han, S.; Choi, P.; Yun, K.-K. Self-healing characteristics of cement concrete containing expansive agent. Case Stud. Constr. Mater. 2022, 17, e01609. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, J.; Qin, F.; Huang, Y.; Sun, F. Mechanical and self-healing properties of calcium-sulfoaluminate-cement-based engineered cementitious composites (ECC). J. Build. Eng. 2023, 77, 107512. [Google Scholar] [CrossRef]
- Acarturk, B.C.; Sandalci, I.; Hull, N.M.; Bundur, Z.B.; Burris, L.E. Calcium sulfoaluminate cement and supplementary cementitious materials-containing binders in self-healing systems. Cem. Concr. Compos. 2023, 141, 105115. [Google Scholar] [CrossRef]
- Van Tittelboom, K.; De Belie, N. Self-Healing in Cementitious Materials—A Review. Materials 2013, 6, 2182–2217. [Google Scholar] [CrossRef]
- Tang, W.; Kardani, O.; Cui, H. Robust evaluation of self-healing efficiency in cementitious materials—A review. Constr. Build. Mater. 2015, 81, 233–247. [Google Scholar] [CrossRef]
- Muhammad, N.Z.; Shafaghat, A.; Keyvanfar, A.; Majid, M.Z.A.; Ghoshal, S.; Yasouj, S.E.M.; Ganiyu, A.A.; Kouchaksaraei, M.S.; Kamyab, H.; Taheri, M.M.; et al. Tests and methods of evaluating the self-healing efficiency of concrete: A review. Constr. Build. Mater. 2016, 112, 1123–1132. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G.; Qian, C.; Schlangen, E. Self-healing in cementitious materials: Materials, methods and service conditions. Mater. Des. 2016, 92, 499–511. [Google Scholar] [CrossRef]
- Reinhardt, H.-W.; Jooss, M. Permeability and self-healing of cracked concrete as a function of temperature and crack width. Cem. Concr. Res. 2003, 33, 981–985. [Google Scholar] [CrossRef]
- Tomczak, K.; Jakubowski, J. The effects of age, cement content, and healing time on the self-healing ability of high-strength concrete. Constr. Build. Mater. 2018, 187, 149–159. [Google Scholar] [CrossRef]
- Wu, M.; Johannesson, B.; Geiker, M. A review: Self-healing in cementitious materials and engineered cementitious composite as a self-healing material. Constr. Build. Mater. 2012, 28, 571–583. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G.; Damidot, D. Characterization and quantification of self-healing behaviors of microcracks due to further hydration in cement paste. Cem. Concr. Res. 2013, 52, 71–81. [Google Scholar] [CrossRef]
- Suryanto, B.; Buckman, J.; Thompson, P.; Bolbol, M.; McCarter, W. Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscope. Mater. Charact. 2016, 119, 175–185. [Google Scholar] [CrossRef]
- Palin, D.; Wiktor, V.; Jonkers, H. Autogenous healing of marine exposed concrete: Characterization and quantification through visual crack closure. Cem. Concr. Res. 2015, 73, 17–24. [Google Scholar] [CrossRef]
- Palin, D.; Jonkers, H.; Wiktor, V. Autogenous healing of sea-water exposed mortar: Quantification through a simple and rapid permeability test. Cem. Concr. Res. 2016, 84, 1–7. [Google Scholar] [CrossRef]
- Zhutovsky, S.; Nayman, S. Modeling of crack-healing by hydration products of residual cement in concrete. Constr. Build. Mater. 2022, 340, 127682. [Google Scholar] [CrossRef]
- Huang, H.; Ye, G.; Damidot, D. Effect of blast furnace slag on self-healing of microcracks in cementitious materials. Cem. Concr. Res. 2014, 60, 68–82. [Google Scholar] [CrossRef]
- Guan, B.; Tian, Q.; Li, J.; Zheng, H.; Xue, T. Selecting bacteria for in-depth self-healing of concrete at both room and low temperature. Constr. Build. Mater. 2023, 394, 132175. [Google Scholar] [CrossRef]
- Moreira, T.N.d.C.; Krelani, V.; Ferreira, S.R.; Ferrara, L.; Filho, R.D.T. Self-healing of slag-cement ultra-high performance steel fiber reinforced concrete (UHPFRC) containing sisal fibers as healing conveyor. J. Build. Eng. 2022, 54, 104638. [Google Scholar] [CrossRef]
- In, C.-W.; Holland, R.B.; Kim, J.-Y.; Kurtis, K.E.; Kahn, L.F.; Jacobs, L.J. Monitoring and evaluation of self-healing in concrete using diffuse ultrasound. NDT E Int. 2013, 57, 36–44. [Google Scholar] [CrossRef]
- Irving, L. The Precipitation of Calcium and Magnesium from Sea Water. J. Mar. Biol. Assoc. U. K. 1926, 14, 441–446. [Google Scholar] [CrossRef]
- Edvardsen, C. Water permeability and autogenous healing of cracks in concrete. ACI Mater. J. 1999, 96, 448–454. [Google Scholar]
- Buenfeld, N.; Newman, J.; Page, C. The resistivity of mortars immersed in sea-water. Cem. Concr. Res. 1986, 16, 511–524. [Google Scholar] [CrossRef]
- Buenfeld, N.; Newman, J. The development and stability of surface layers on concrete exposed to sea-water. Cem. Concr. Res. 1986, 16, 721–732. [Google Scholar] [CrossRef]
- Jakobsen, U.H.; De Weerdt, K.; Geiker, M.R. Elemental zonation in marine concrete. Cem. Concr. Res. 2016, 85, 12–27. [Google Scholar] [CrossRef]
- Wang, R.; Ding, Z.; Zhang, Y.; Xu, Y. Self-healing of high-performance engineered cementitious materials with crystalline admixture in the seawater environment. J. Build. Eng. 2023, 63, 105472. [Google Scholar] [CrossRef]
- Berner, R. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochim. Cosmochim. Acta 1975, 39, 489–504. [Google Scholar] [CrossRef]
GGBFS | OPC | ||
---|---|---|---|
Chemical Components (%) | SiO2 | 36.05 | 20.82 |
Al2O3 | 11.83 | 4.77 | |
Fe2O3 | 0.82 | 3.34 | |
CaO | 42.17 | 62.25 | |
MgO | 3.62 | 4.03 | |
TiO2 | 0.74 | ||
MnO | 0.16 | ||
SO3 | 4.26 | 3.51 | |
K2O | 0.31 | 0.58 | |
Physical properties | LOI (%) | 0.89 | 1.04 |
Blain (m2/kg) | 420 | 330 | |
Density (g/cm3) | 2.97 | 3.15 |
Ca2+ | K+ | Mg2+ | Na+ | Cl− | SO42− | |
---|---|---|---|---|---|---|
Seawater | 420 ± 20 | 470 ± 40 | 1380 ± 60 | 8700 ± 130 | 22,500 ± 80 | 2760 ± 70 |
UPV (m/s) (Standard Deviation) | ||||||
---|---|---|---|---|---|---|
GGBFS Content | Seawater Temperature (°C) | UPV before Loading () | After 30 Days () | After 60 Days () | ΔUPVINT-30 | ΔUPV30–60 |
0% | 5 | 4002.1 (0.33) | 4031.0 (0.27) | 4055.5 (0.52) | 0.722 | 0.608 |
15 | 4010.3 (0.27) | 4040.2 (0.31) | 4068.8 (0.47) | 0.746 | 0.708 | |
25 | 4007.5 (0.41) | 4043.1 (0.24) | 4077.1 (0.46) | 0.888 | 0.841 | |
10% | 5 | 3978.0 (0.32) | 4012.0 (0.29) | 4048.0 (0.43) | 0.855 | 0.897 |
15 | 3980.2 (0.39) | 4018.1 (0.35) | 4059.6 (0.51) | 0.952 | 1.033 | |
25 | 3985.4 (0.41) | 4027.1 (0.44) | 4073.1 (0.62) | 1.046 | 1.142 | |
20% | 5 | 3965.4 (0.33) | 4010.2 (0.30) | 4058.2 (0.73) | 1.13 | 1.197 |
15 | 3965.9 (0.44) | 4013.0 (0.34) | 4067.1 (0.68) | 1.188 | 1.348 | |
25 | 3960.5 (0.29) | 4010.0 (0.25) | 4068.3 (0.69) | 1.25 | 1.454 | |
30% | 5 | 3945.9 (0.28) | 3992.1 (0.36) | 4047.3 (0.53) | 1.171 | 1.383 |
15 | 3946.2 (0.31) | 3992.1 (0.27) | 4055.1 (0.66) | 1.287 | 1.455 | |
25 | 3945.9 (0.35) | 4000.0 (0.43) | 4065.8 (0.61) | 1.371 | 1.645 |
UPV (m/s) (Standard Deviation) | |||||||
---|---|---|---|---|---|---|---|
GGBFS Content | Seawater Temperature (°C) | UPV before Loading () | After Loading () | After 30 Days () | After 60 Days () | ||
0% | 5 | 4001.2 (0.27) | 3871.2 (0.96) | 3992.7 (1.11) | 4012.0 (1.23) | 3.139 | 0.483 |
15 | 4005.6 (0.23) | 3872.3 (0.87) | 4007.5 (0.95) | 4028.5 (1.17) | 3.491 | 0.524 | |
25 | 4009.1 (0.30) | 3874.1 (1.05) | 4013.2 (1.20) | 4038.0 (1.21) | 3.591 | 0.618 | |
10% | 5 | 3979.0 (0.31) | 3855.0 (1.13) | 3981.2 (1.18) | 4002.0 (1.14) | 3.274 | 0.522 |
15 | 3983.2 (0.35) | 3864.0 (0.98) | 3998.0 (1.21) | 4026.0 (1.28) | 3.468 | 0.701 | |
25 | 3981.4 (0.29) | 3857.5 (1.26) | 3998.7 (0.99) | 4033.1 (1.15) | 3.674 | 0.86 | |
20% | 5 | 3961.0 (0.36) | 3828.0 (1.17) | 3968.0 (1.07) | 4003.0 (1.24) | 3.657 | 0.882 |
15 | 3962.3 (0.32) | 3825.0 (1.09) | 3968.3 (1.14) | 4005.6 (1.29) | 3.746 | 0.94 | |
25 | 3963.0 (0.38) | 3830.5 (1.14) | 3991.0 (1.16) | 4033.5 (1.22) | 4.19 | 1.065 | |
30% | 5 | 3946.5 (0.31) | 3811.0 (1.26) | 3953.8 (1.10) | 3992.0 (1.28) | 3.726 | 0.987 |
15 | 3947.1 (0.29) | 3815.3 (1.17) | 3965.1 (1.25) | 4008.5 (1.20) | 3.934 | 1.095 | |
25 | 3946.4 (0.24) | 3810.0 (1.21) | 3984.0 (0.98) | 4032.0 (1.22) | 4.567 | 1.205 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, C.; Park, Y.; Kim, T. Evaluation of Self-Healing Properties of OPC-Slag Cement Immersed in Seawater Using UPV Measurements. Materials 2023, 16, 7018. https://doi.org/10.3390/ma16217018
Kang C, Park Y, Kim T. Evaluation of Self-Healing Properties of OPC-Slag Cement Immersed in Seawater Using UPV Measurements. Materials. 2023; 16(21):7018. https://doi.org/10.3390/ma16217018
Chicago/Turabian StyleKang, Choonghyun, Yongmyung Park, and Taewan Kim. 2023. "Evaluation of Self-Healing Properties of OPC-Slag Cement Immersed in Seawater Using UPV Measurements" Materials 16, no. 21: 7018. https://doi.org/10.3390/ma16217018
APA StyleKang, C., Park, Y., & Kim, T. (2023). Evaluation of Self-Healing Properties of OPC-Slag Cement Immersed in Seawater Using UPV Measurements. Materials, 16(21), 7018. https://doi.org/10.3390/ma16217018