High-Temperature Tensile Mechanical Properties and Microstructure of Rolled 6082-T6 Aluminum Alloy Sheets
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Experimental Material
2.2. Mechanical Property Test
2.3. Characterization
3. Experimental Results
3.1. High-Temperature Flow Behavior
3.2. Fracture Behavior
4. Discussion
5. Conclusions
- (1)
- The engineering stress of the 6082-T6 aluminum alloy increased rapidly with the increase in engineering strain. After the yield point, the rising speed slowed down and reached the peak. Then, the stress began to decline before the fracture. The tensile process of the alloy was an interaction of work hardening and dynamic softening.
- (2)
- The stress level of all the samples decreased with increasing temperature. This can be explained by dynamic recovery, dynamic recrystallization and precipitate coarsening. The specimens displayed ductile fractures, and the dimples became deeper and larger at higher tensile temperatures.
- (3)
- When deformed at 200 °C, the alloy exhibited obvious anisotropy. This can be attributed to the original elongated grains. Alongside that, the brass component also resulted in the anisotropy. With increasing temperature. The anisotropy weakened at a temperature of 400 °C and there was no evident anisotropy because it was easier for the slip to be activated at an elevated temperature, and a great amount of deformation structure in the original material turned into a recrystallized structure.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, X.; Shu, X.; Wang, D.; Xu, S.; Xiang, W. Multi-step forming simulation and quality control of aluminum alloy automobile rear upper control arm. Materials 2022, 15, 3610. [Google Scholar] [CrossRef] [PubMed]
- Montanari, R.; Palombi, A.; Richetta, M.; Varone, A. Additive manufacturing of aluminum alloys for aeronautic applications: Advantages and problems. Metals 2023, 13, 716. [Google Scholar] [CrossRef]
- Tao, J.; Xiang, L.; Zhang, Y.; Zhao, Z.; Su, Y.; Chen, Q.; Peng, F. Corrosion behavior and mechanical performance of 7085 aluminum alloy in a humid and hot marine atmosphere. Materials 2022, 15, 7503. [Google Scholar] [CrossRef]
- Zhao, N.; Ma, H.; Sun, Q.; Hu, Z.; Yan, Y.; Chen, T.; Hua, L. Microstructural evolutions and mechanical properties of 6082 aluminum alloy part produced by a solution-forging integrated process. J. Mater. Process. Technol. 2022, 308, 117715. [Google Scholar] [CrossRef]
- Bordeasu, I.; Ghiban, B.; Micu, L.M.; Luca, A.N.; Demian, A.M.; Istrate, D. The influence of heat aging treatments on the cavitation erosion behavior of a type 6082 aluminum alloy. Materials 2023, 16, 5875. [Google Scholar] [CrossRef]
- Snopiński, P.; Hilšer, O.; Hajnyš, J. Tuning the defects density in additively manufactured fcc aluminium alloy via modifying the cellular structure and post-processing deformation. Mater. Sci. Eng. A 2023, 865, 144605. [Google Scholar] [CrossRef]
- Shveykin, A.; Romanov, K.; Trusov, P. Some issues with statistical crystal plasticity models: Description of the effects triggered in FCC crystals by loading with strain-path changes. Materials 2022, 15, 6586. [Google Scholar] [CrossRef]
- Goik, P.; Schiffl, A.; Höppel, H.W. Formation of peripheral coarse grain in thin-walled Al-Mg-Si extrusion profiles. Metall. Mater. Trans. A 2023, 54, 3940–3956. [Google Scholar] [CrossRef]
- Hodžić, E.; Domitner, J.; Thum, A.; Sabet, A.S.; Müllner, N.; Fragner, W.; Sommitsch, C. Influence of alloy composition and lubrication on the formability of Al-Mg-Si alloy blanks. J. Manuf. Process. 2023, 85, 109–121. [Google Scholar] [CrossRef]
- Krishna, N.N.; Ashfaq, M.; Susila, P.; Sivaprasad, K.; Venkateswarlu, K. Mechanical anisotropy and microstructural changes during cryorolling of Al-Mg-Si alloy. Mater. Charact. 2015, 107, 302–308. [Google Scholar] [CrossRef]
- Debih, A.; Ouakdi, E.H. Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al-Mg-Si-Mn. Int. J. Mater. Res. 2018, 109, 34–41. [Google Scholar] [CrossRef]
- Chen, Y.; Clausen, A.H.; Hopperstad, O.S.; Langseth, M. Stress-strain behaviour of aluminium alloys at a wide range of strain rates. Int. J. Solids Struct. 2009, 46, 3825–3835. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, G.; Xu, X.; Wang, Y. Effects of heat treatment on the microstructure, texture and mechanical property anisotropy of extruded 2196 Al-Cu-Li alloy. J. Alloy Compd. 2021, 862, 158102. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, L.; Chen, H.; Liu, J.; Dan, C.; Ma, S.; Chen, Z. Enhancing mechanical properties and improving mechanical anisotropy of rolled 2024 Al sheet by TiB2 nanoparticles. Mater. Sci. Eng. A 2023, 874, 145077. [Google Scholar] [CrossRef]
- Barnwal, V.K.; Raghavan, R.; Tewari, A.; Narasimhan, K.; Mishra, S.K. Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet. Mater. Sci. Eng. A 2017, 679, 56–65. [Google Scholar] [CrossRef]
- Li, Y.; Xu, G.; Liu, S.; Wang, B.; Peng, X. Study on anisotropy of Al-Zn-Mg-Sc-Zr alloy sheet. Mater. Charact. 2021, 172, 110904. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, Y.; Jiang, F.; Xu, C. The improved mechanical anisotropy of a commercial Al-Cu-Mg-Mn-Si (2017) aluminum alloy by cross rolling. Adv. Eng. Mater. 2022, 24, 2100831. [Google Scholar] [CrossRef]
- Lei, D.; Zhang, H.; LI, G.; Tang, X.F.; Yi, P.S.; Liu, Z.; Wang, X.Y.; Jin, J.S. Processing map and hot deformation behavior of squeeze cast 6082 aluminum alloy. Trans. Nonferrous Met. Soc. 2022, 32, 2150–2163. [Google Scholar]
- Zhao, N.; Sun, Q.; Pang, Q.; Hu, Z. Comprehensive study of hot compression behaviors and microstructure evolution of solutionized 6082 aluminum alloy extruded bar. J. Alloy Compd. 2023, 931, 167541. [Google Scholar] [CrossRef]
- Lin, H. Dynamic recrystallization behavior of 6082 aluminum alloy during hot deformation. Adv. Mech. Eng. 2021, 13, 16878140211046107. [Google Scholar] [CrossRef]
- Zhang, M.; Tian, Y.; Zheng, X.; Zhang, Y.; Chen, L.; Wang, J. Research progress on multi-component alloying and heat treatment of high strength and toughness Al-Si-Cu-Mg cast aluminum alloys. Materials 2023, 16, 1065. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Yue, W.; Li, J.; Bin, G.; Li, C. Review of damage mechanism and protection of aero-engine blades based on impact properties. Eng. Fail. Anal. 2022, 140, 106570. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Qin, R.; Ren, W.; Wen, G. XGBoost-based on-line prediction of seam tensile strength for Al-Li alloy in laser welding: Experiment study and modelling. J. Manuf. Process. 2021, 64, 30–44. [Google Scholar] [CrossRef]
- Ren, P.R.; Song, W.; Zhong, G.; Huang, W.Q.; Zuo, Z.X.; Zhao, C.Z.; Yan, K.J. High-cycle fatigue failure analysis of cast Al-Si alloy engine cylinder head. Eng. Fail. Anal. 2021, 127, 105546. [Google Scholar] [CrossRef]
- Michi, R.A.; Plotkowski, A.; Shyam, A.; Dehoff, R.R.; Babu, S.S. Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. Int. Mater. Rev. 2022, 67, 298–345. [Google Scholar] [CrossRef]
- Liu, Z.W.; Wang, G.; Yi, J. Study on heat transfer behaviors between Al-Mg-Si alloy and die material at different contact conditions based on inverse heat conduction algorithm. J. Mater. Res. Technol. 2020, 9, 1918–1928. [Google Scholar] [CrossRef]
- Hu, H.E.; Zhen, L.; Yang, L.; Shao, W.Z.; Zhang, B.Y. Deformation behavior and microstructure evolution of 7050 aluminum alloy during high temperature deformation. Mater. Sci. Eng. A 2008, 488, 64–71. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, J.; Chen, L.; Li, Y. Compressive creep aging behavior and microstructure evolution in extruded Al-Mg-Si alloy under different temperature and stress levels. Mater. Today Commun. 2022, 33, 104722. [Google Scholar] [CrossRef]
- Moćko, W.; Rodríguez-Martínez, J.A.; Kowalewski, Z.L.; Rusinek, A. Compressive viscoplastic response of 6082-T6 and 7075-T6 aluminium alloys under wide range of strain rate at room temperature: Experiments and modelling. Strain 2012, 48, 498–509. [Google Scholar] [CrossRef]
- Xu, Z.; Ma, H.; Zhao, N.; Hu, Z. Investigation on compressive formability and microstructure evolution of 6082-T6 aluminum alloy. Metals 2020, 10, 469. [Google Scholar] [CrossRef]
- Ma, H.H.; Hou, Q.; Jiang, Y.; Yu, Z. Mechanical performance of 6082-T6 aluminum alloy columns under eccentric compression at elevated temperatures. Thin-Walled Struct. 2022, 171, 108824. [Google Scholar] [CrossRef]
- Miao, J.; Sutton, S.; Luo, A.A. Deformation microstructure and thermomechanical processing maps of homogenized AA2070 aluminum alloy. Mater. Sci. Eng. A 2022, 834, 142619. [Google Scholar] [CrossRef]
- Rong, W.; Shan, Z.; Wang, B.; Wang, Y.; Wang, J. Microstructure evolution of 2A12 aluminum alloy under isothermal heat treatment direct writing process. Materials 2022, 15, 6279. [Google Scholar] [CrossRef]
- Xiao, A.; Huang, C.; Cui, X.; Yan, Z.; Yu, Z. Impact of the pulse induced current on the microstructure and mechanical properties of the 7075-T6 aluminum alloy. J. Alloys Compd. 2022, 911, 165021. [Google Scholar] [CrossRef]
- Feng, D.; Xu, R.; Li, J.; Huang, W.; Wang, J.; Liu, Y.; Zhao, L.X.; Li, C.B.; Zhang, H. Microstructure evolution behavior of spray-deposited 7055 aluminum alloy during hot deformation. Metals 2022, 12, 1982. [Google Scholar] [CrossRef]
- Vilamosa, V.; Clausen, A.H.; Børvik, T.; Skjervold, S.R.; Hopperstad, O.S. Behaviour of Al-Mg-Si alloys at a wide range of temperatures and strain rates. Int. J. Impact Eng. 2015, 86, 223–239. [Google Scholar] [CrossRef]
- Chen, Z.; Fang, G.; Zhao, J.Q. Formability evaluation of aluminum alloy 6061-T6 sheet at room and elevated temperatures. J. Mater. Eng. Perform. 2017, 26, 4626–4637. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, Y.; Wang, D.; Du, L.; Zhao, J. An improved damage-coupled viscoplastic model for predicting ductile fracture in aluminum alloy at high temperatures. J. Mater. Process. Technol. 2021, 296, 117229. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, B.; Wu, Y.; Yang, X. Constitutive modeling of flow behavior and microstructure evolution of AA7075 in hot tensile deformation. Mater. Sci. Eng. A 2018, 712, 704–713. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, M.; Wang, Z.; Wang, S.; Liu, C.; Qian, L.; Li, L.J.; Zhao, H. Effects of cold temperatures, strain rates and anisotropy on the mechanical behavior and fracture morphology of an Al-Zn-Mg-Cu alloy. Mater. Sci. Eng. A 2021, 806, 140691. [Google Scholar] [CrossRef]
- Ye, T.; Qiu, S.W.; Xia, E.L.; Luo, F.; Liu, W.; Wu, Y.Z. Mechanical property and microstructure of rolled 7075 alloy under hot compression with different original grains. Metals 2023, 13, 1456. [Google Scholar] [CrossRef]
- Frodal, B.H.; Thomesen, S.; Børvik, T.; Hopperstad, O.S. On fracture anisotropy in textured aluminium alloys. Int. J. Solids Struct. 2022, 244, 111563. [Google Scholar] [CrossRef]
- Thomesen, S.; Hopperstad, O.S.; Børvik, T. Anisotropic plasticity and fracture of three 6000-series aluminum alloys. Metals 2021, 11, 557. [Google Scholar] [CrossRef]
- Kashyap, B.P.; Hodgson, P.D.; Estrin, Y.; Timokhina, I.; Barnett, M.R.; Sabirov, I. Plastic flow properties and microstructural evolution in an ultrafine-grained Al-Mg-Si alloy at elevated temperatures. Metall. Mater. Trans. A 2009, 40, 3294–3303. [Google Scholar] [CrossRef]
- Khan, M.A.; Wang, Y.; Anjum, M.J.; Yasin, G.; Malik, A.; Nazeer, F.; Zhang, H. Effect of heat treatment on the precipitate behaviour, corrosion resistance and high temperature tensile properties of 7055 aluminum alloy synthesis by novel spray deposited followed by hot extrusion. Vacuum 2020, 174, 109185. [Google Scholar] [CrossRef]
- He, D.; Chen, S.B.; Lin, Y.C.; Xie, H.; Li, C. Hot tensile behavior of a 7046-aluminum alloy: Fracture mechanisms and constitutive models. Mater. Today Commun. 2023, 34, 105209. [Google Scholar] [CrossRef]
- Vatansever, F.; Erturk, A.T.; Karabay, S. Improving mechanical properties of AlSi10Mg aluminum alloy using ultrasonic melt treatment combined with T6 heat treatment. Kov. Mater. 2019, 57, 33–43. [Google Scholar] [CrossRef]
- Naumenko, K.; Gariboldi, E. Experimental analysis and constitutive modeling of anisotropic creep damage in a wrought age-hardenable Al alloy. Eng. Fract. Mech. 2022, 259, 108119. [Google Scholar] [CrossRef]
- Cho, K.K.; Chung, Y.H.; Lee, C.W.; Kwun, S.I.; Shin, M. Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet. Scr. Mater. 1999, 40, 651–657. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Z.P.; Zhang, Z.; Li, X.; Wang, Q.; Zhang, Y. Processing maps for hot deformation of the extruded 7075 aluminum alloy bar: Anisotropy of hot workability. Mater. Sci. Eng. A 2014, 615, 183–190. [Google Scholar] [CrossRef]
- Ye, T.; Li, L.; Liu, X.; Liu, W.H.; Guo, P.C.; Tang, X. Anisotropic deformation behavior of as-extruded 6063-T4 alloy under dynamic impact loading. Mater. Sci. Eng. A 2016, 666, 149–155. [Google Scholar] [CrossRef]
- Lim, H.; Lee, M.G.; Kim, J.H.; Adams, B.L.; Wagoner, R.H. Simulation of polycrystal deformation with grain and grain boundary effects. Int. J. Plast. 2011, 27, 1328–1354. [Google Scholar] [CrossRef]
- Wang, S.; Huang, L.; Zhang, R.; An, Q.; Sun, F.; Meng, F.; Geng, L. Effects of rolling deformation on microstructure orientations and tensile properties of TiB/(TA15-Si) composites. Mater. Charact. 2022, 194, 112425. [Google Scholar] [CrossRef]
- Raabe, D.; Roters, F. Using texture components in crystal plasticity finite element simulations. Int. J. Plast. 2004, 20, 339–361. [Google Scholar] [CrossRef]
- Das, P.; Jayaganthan, R.; Singh, I.V. Tensile and impact-toughness behaviour of cryorolled Al 7075 alloy. Mater. Des. 2011, 32, 1298–1305. [Google Scholar] [CrossRef]
- Lypchanskyi, O.; Rigas, N.; Korpała, G.; Merklein, M.; Prahl, U. Ex-situ and in-situ investigations of the microstructural evolution of AA6082 aluminum alloy during heat treatment. Mater. Sci. Eng. A 2023, 870, 144828. [Google Scholar] [CrossRef]
- Bembalge, O.B.; Panigrahi, S.K. Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension. Int. J. Mech. Sci. 2021, 191, 106100. [Google Scholar] [CrossRef]
- Du, Z.H.; Deng, Z.S.; Cui, X.H.; Xiao, A. Deformation behavior and properties of 7075 aluminum alloy under electromagnetic hot forming. Materials 2021, 14, 4954. [Google Scholar] [CrossRef]
- Wu, H.; Wen, S.P.; Huang, H.; Gao, K.Y.; Wu, X.L.; Wang, W.; Nie, Z.R. Hot deformation behavior and processing map of a new type Al-Zn-Mg-Er-Zr alloy. J. Alloys Compd. 2016, 685, 869–880. [Google Scholar] [CrossRef]
Element | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Al |
---|---|---|---|---|---|---|---|---|---|
wt% | 0.89 | 0.2 | 0.1 | 0.43 | 0.75 | 0.1 | 0.02 | 0.09 | Balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, T.; Xia, E.; Qiu, S.; Wang, Y.; Yue, H.; Liu, J.; Wu, Y. High-Temperature Tensile Mechanical Properties and Microstructure of Rolled 6082-T6 Aluminum Alloy Sheets. Materials 2023, 16, 7019. https://doi.org/10.3390/ma16217019
Ye T, Xia E, Qiu S, Wang Y, Yue H, Liu J, Wu Y. High-Temperature Tensile Mechanical Properties and Microstructure of Rolled 6082-T6 Aluminum Alloy Sheets. Materials. 2023; 16(21):7019. https://doi.org/10.3390/ma16217019
Chicago/Turabian StyleYe, Tuo, Erli Xia, Sawei Qiu, Yong Wang, Huanyu Yue, Jie Liu, and Yuanzhi Wu. 2023. "High-Temperature Tensile Mechanical Properties and Microstructure of Rolled 6082-T6 Aluminum Alloy Sheets" Materials 16, no. 21: 7019. https://doi.org/10.3390/ma16217019
APA StyleYe, T., Xia, E., Qiu, S., Wang, Y., Yue, H., Liu, J., & Wu, Y. (2023). High-Temperature Tensile Mechanical Properties and Microstructure of Rolled 6082-T6 Aluminum Alloy Sheets. Materials, 16(21), 7019. https://doi.org/10.3390/ma16217019