Grouting Mechanism of Polyurethane Composite Materials in Asphalt Pavement Subsidence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation of Polyurethane Composite Material
2.3. Nondestructive Testing of Asphalt Pavement Subsidence
2.4. Performance Tests of Polyurethane Composite Materials
2.5. The Grouting Effect Tests of Polyurethane Composite Materials
3. Results and Discussion
3.1. The Nondestructive Evaluation of Asphalt Pavement Subsidence
3.2. The Grouting Design of Polyurethane Composite Materials
3.3. The Grouting Construction Case of Polyurethane Composite Materials
3.4. The Fundamental Properties Evaluation of Polyurethane Composite Materials
3.5. The Grouting Effect Evaluation of Polyurethane Composite Materials
3.6. The Grouting Mechanisms of Polyurethane Composite Materials
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Page, J.R.; Manfredi, Z.; Bliznakov, S.; Valla, J.A. Recent Progress in Electrochemical Upgrading of Bio-Oil Model Compounds and Bio-Oils to Renewable Fuels and Platform Chemicals. Materials 2023, 16, 394. [Google Scholar] [CrossRef]
- Shah, R.; McMann, O.; Borthwick, F. Challenges and prospects of applying asset management principles to highway maintenance: A case study of the UK. Transp. Res. Part A Policy Pract. 2017, 97, 231–243. [Google Scholar] [CrossRef]
- Al-Shawafi, A.; Zhu, H.; Haruna, S.; Bo, Z.; Laqsum, S.A.; Borito, S.M. Performance concrete retrofitted with polyurethane grout material: Experimental investigation and statistical analysis. Structures 2023, 55, 185–200. [Google Scholar] [CrossRef]
- Saleh, S.; Yunus, N.Z.M.; Ahmad, K.; Ali, N. Improving the strength of weak soil using polyurethane grouts: A review. Constr. Build. Mater. 2019, 202, 738–752. [Google Scholar] [CrossRef]
- An, S.; Ai, C.; Ren, D.; Rahman, A.; Qiu, Y. Laboratory and field evaluation of a novel cement grout asphalt composite. J. Mater. Civ. Eng. 2018, 30, 04018179. [Google Scholar] [CrossRef]
- Gallu, R.; Méchin, F.; Dalmas, F.; Gérard, J.-F.; Perrin, R.; Loup, F. Rheology-morphology relationships of new polymer-modified bitumen based on thermoplastic polyurethanes (TPU). Constr. Build. Mater. 2020, 259, 120404. [Google Scholar] [CrossRef]
- Russo, F.; Veropalumbo, R.; Biancardo, S.A.; Oreto, C.; Scherillo, F.; Viscione, N. Reusing jet grouting waste as filler for road asphalt mixtures of base layers. Materials 2021, 14, 3200. [Google Scholar] [CrossRef]
- Ponomarev, A.; Zerkai, O.; Samarin, E. Protection of the Transport Infrastructure from Influence of Landslides by Suspension Grouting. Procedia Eng. 2017, 189, 880–885. [Google Scholar] [CrossRef]
- Blaheta, R.; Kohut, R.; Kolcun, A.; Souček, K.; Staš, L.; Vavro, L. Digital image based numerical micromechanics of geocomposites with application to chemical grouting. Int. J. Rock Mech. Min. Sci. 2015, 77, 77–88. [Google Scholar] [CrossRef]
- Khave, G. Delineating subterranean water conduits using hydraulic testing and machine performance parameters in TBM tunnel post-grouting. Int. J. Rock Mech. Min. Sci. 2014, 70, 308–317. [Google Scholar] [CrossRef]
- Faramarzi, L.; Rasti, A.; Abtahi, S. An experimental study of the effect of cement and chemical grouting on the improvement of the mechanical and hydraulic properties of alluvial formations. Constr. Build. Mater. 2016, 126, 32–43. [Google Scholar] [CrossRef]
- Ezzat, S.; Ewida, A. Smart soil grouting using innovative urease-producing bacteria and low cost materials. J. Appl. Microbiol. 2021, 131, 2294–2307. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, H.; Zhang, L.; Zhao, Z.; Xu, Y.; Cheng, Y.; Wang, M.; Chen, J.; Wang, J. Design optimization of cement grouting material based on adaptive boosting algorithm and simplicial homology global optimization. J. Build. Eng. 2022, 49, 104049. [Google Scholar] [CrossRef]
- Huang, J.; Diao, Y.; Li, P.; Zheng, G.; Pan, W.; Su, Y.; Gan, W.; Chen, H. Optimization Design and Characteristic of Retarding and Low-early-strength Grouting Material for Capsule Grouting Technology: Laboratory and Field Evaluation. J. Mater. Res. Technol. 2022, 7, 038. [Google Scholar] [CrossRef]
- Polimera, S.; Gali, A.; Rahaman, A.; Chandan, M.; Balakumaran, S.; Nath, S. Thermo-mechanical property enhancement of rigid polyurethane foam composite using low cost, environment friendly fly ash over silica particles. J. Vinyl Addit. Technol. 2023, 128, 22036–22045. [Google Scholar] [CrossRef]
- Han, R.; Li, S.; Sun, W. Effect of grouting material strength on bond strength of sleeve and acoustic emission characterization of bond failure damage process. Constr. Build. Mater. 2022, 324, 126503. [Google Scholar] [CrossRef]
- Oreto, C.; Veropalumbo, R.; Viscione, N.; Biancardo, S.A.; Russo, F. Investigating the environmental impacts and engineering performance of road asphalt pavement mixtures made up of jet grouting waste and reclaimed asphalt pavement. Environ. Res. 2021, 198, 111277. [Google Scholar] [CrossRef]
- Zarei, S.; Ouyang, J.; Yang, W.; Zhao, Y. Experimental analysis of semi-flexible pavement by using an appropriate cement asphalt emulsion paste. Constr. Build. Mater. 2020, 230, 116994. [Google Scholar] [CrossRef]
- Mohammadzamani, D.; Lavasan, A.A.; Wichtmann, T. Tail void grouting material: A parametric study on the role of hydro-mechanical characteristics in mechanized tunneling. Tunn. Undergr. Space Technol. 2023, 135, 105053. [Google Scholar] [CrossRef]
- Oppong, F.; Yao, N.; Zhang, W.; Liu, Y.; Kolawole, O. Tentative Application of Expansive Cementitious Materials in Grouting-A Systematic Review. Case Stud. Constr. Mater. 2023, 18, e02113. [Google Scholar] [CrossRef]
- Otoo, S.L.; Yu, D.; Wu, Y.; Chen, W.; Deng, C.; Li, Q.; Li, S. Enhancing the radiographic imaging of void defects in grouts by attenuation coefficient modification of grouting materials. Radiat. Phys. Chem. 2023, 207, 110886. [Google Scholar] [CrossRef]
- Javadi, H.; Urchueguía, J.F.; Badenes, B.; Mateo, M.; Ghafar, A.N.; Chaudhari, O.A.; Zirgulis, G.; Lemus, L.G. Laboratory and numerical study on innovative grouting materials applicable to borehole heat exchangers (BHE) and borehole thermal energy storage (BTES) systems. Renew. Energy 2022, 194, 788–804. [Google Scholar] [CrossRef]
- Dhandapani, B.P.; Mullapudi, R.S. Design and performance characteristics of cement grouted bituminous mixtures-a review. Constr. Build. Mater. 2023, 369, 130586. [Google Scholar] [CrossRef]
- Sakhno, I.; Sakhno, S. Numerical studies of floor heave mechanism and the effectiveness of grouting reinforcement of roadway in soft rock containing the mine water. Int. J. Rock Mech. Min. Sci. 2023, 170, 105484. [Google Scholar] [CrossRef]
- Mantey, S.K.; Zhang, Y.; Jiang, J.; Amponsah, E.; Wang, Z. Numerical model of cumulative damage evolution of offshore wind turbine grouted connection under cyclic axial load. Ocean Eng. 2023, 280, 114520. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard test methods of bitumen and bituminous mixtures for highway engineering. Ministry of Transport: Beijing, China, 2011.
- JC/T 2041-2020; Polyurethane Grouting Material. Ministry of Industry and Information Technology: Beijing, China, 2011.
- GB/T50123-1999; Geotechnical Test Method Standard. China Market Supervision Administration: Beijing, China, 1999.
- Yu, X. Preparation and structure analysis of aluminum oxide/water glass/polyurethane composite grouting material for mining. J. Build. Eng. 2023, 76, 107170. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Li, L.; Zhao, G.; Xu, S. Adhesive performance and impermeability mechanism of loess embankment using caster oil based polyurethane reinforce. Constr. Build. Mater. 2023, 346, 130006. [Google Scholar] [CrossRef]
- Vennapusa, P.; Zhang, Y.; White, D. Comparison of pavement slab stabilization using cementitious grout and injected polyurethane foam. J. Perform. Constr. Facil. 2016, 30, 04016056. [Google Scholar] [CrossRef]
- Silva, J.; Serra, C. Injection of discontinuities in concrete dams with cement-based grouts. J. Struct. Integr. Maint. 2022, 7, 252–264. [Google Scholar]
- Spagnoli, G. A review of soil improvement with non-conventional grouts. Int. J. Geotech. Eng. 2021, 15, 273–287. [Google Scholar] [CrossRef]
Sample ID | PAPI | 1,2-E | AP | n-B | 1,4-B | TL | SO | RM | BFS |
---|---|---|---|---|---|---|---|---|---|
1# | 20 | 20 | 25 | 2 | 2 | 0.2 | 0.8 | 30 | 0 |
2# | 20 | 20 | 25 | 2 | 2 | 0.2 | 0.8 | 20 | 10 |
3# | 20 | 20 | 25 | 2 | 2 | 0.2 | 0.8 | 10 | 20 |
4# | 20 | 20 | 25 | 2 | 2 | 0.2 | 0.8 | 5 | 25 |
5# | 20 | 20 | 25 | 2 | 2 | 0.2 | 0.8 | 0 | 30 |
Sample ID | Density (g/cm3) | Compressive Strength (MPa) | Setting Time (s) | Permeability Coefficient (cm/s) |
---|---|---|---|---|
1# | 0.825 | 52.1 | 1800 | 1.2 × 10−8 |
2# | 0.756 | 49.8 | 1200 | 4.3 × 10−8 |
3# | 0.713 | 42.5 | 900 | 8.9 × 10−8 |
4# | 0.707 | 38.2 | 750 | 9.6 × 10−8 |
5# | 0.528 | 25.0 | 300 | 1.0 × 10−7 |
Geopolymer | 2.782 | 42.3 | 7200 | 9.8 × 10−8 |
Polyurethane | 0.135 | 5.6 | 120 | 1.65 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, M.; Zhou, X.; Yan, Y.; Jiang, R.; Zhou, X. Grouting Mechanism of Polyurethane Composite Materials in Asphalt Pavement Subsidence. Materials 2023, 16, 7052. https://doi.org/10.3390/ma16217052
Ran M, Zhou X, Yan Y, Jiang R, Zhou X. Grouting Mechanism of Polyurethane Composite Materials in Asphalt Pavement Subsidence. Materials. 2023; 16(21):7052. https://doi.org/10.3390/ma16217052
Chicago/Turabian StyleRan, Maoping, Xinxing Zhou, Yuan Yan, Ruiqie Jiang, and Xinglin Zhou. 2023. "Grouting Mechanism of Polyurethane Composite Materials in Asphalt Pavement Subsidence" Materials 16, no. 21: 7052. https://doi.org/10.3390/ma16217052
APA StyleRan, M., Zhou, X., Yan, Y., Jiang, R., & Zhou, X. (2023). Grouting Mechanism of Polyurethane Composite Materials in Asphalt Pavement Subsidence. Materials, 16(21), 7052. https://doi.org/10.3390/ma16217052