AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Freeze-Drying Treatment
2.3. Raman Spectroscopic Analysis
2.4. Crystal Violet Staining Method
3. Results
3.1. Raman Spectroscopy
3.2. Crystal Violet Staining Evaluation
3.2.1. Biofilm by E. coli
3.2.2. Biofilm by S. epidermidis
4. Discussion
Bacteria | Materials | Flux Density | Effective Frequencies | References |
---|---|---|---|---|
Environmental biota | Pure copper | 1 mT–5 mT | 4 kHz, 8 kHz | [50,51] |
Environmental biota | Pure aluminum | 1 mT–5 mT | 4 kHz, 8 kHz | [50,51] |
Environmental biota | Carbon steel | 1 mT–5 mT | 4 kHz, 8 kHz | [50,51] |
Environmental biota | Silane coated glass | 1 mT | 4 kHz | [52] |
Environmental biota | Pure iron | 1 mT | 8 kHz | [38] |
Environmental biota | Pure copper | 1 mT | 8 kHz | [38] |
Environmental biota | Pure aluminum | 1 mT | 8 kHz | [38] |
E. coli | Glass | 1 mT | 8 kHz, 16 kHz | [53] |
S. epidermidis | Glass | 1 mT | 10 kHz | [54] |
5. Conclusions
- (1)
- In the case of E. coli, biofilm suppression was observed when 20 kHz was applied but not when 30 kHz was applied.
- (2)
- In the case of Staphylococcus epidermidis, biofilm suppression was observed at 20 kHz and 30 kHz.
- (3)
- These results were similar at the stationary phase of bacterial concentrations (about 109 CFU/mL) and in the second half of the log growth phase (about 107 CFU/mL).
- (4)
- The partial or total disruption of the extracellular membrane by the AC electromagnetic field may have caused localized antimicrobial activity and suppressed bacterial growth, thereby inhibiting the presence of biofilms.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López, D.; Vlamakis, H.; Kolter, R. Biofilms. Cold Spring Harb. Perspect. Biol. 2010, 2, a000398. [Google Scholar] [CrossRef] [PubMed]
- Branda, S.S.; Vik, Å.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcal biofilms. Bact. Biofilms 2008, 322, 207–228. [Google Scholar]
- Bridier, A.; Briandet, R.; Thomas, V.; Dubois-Brissonnet, F. Resistance of bacterial biofilms to disinfectants: A review. Biofouling 2011, 27, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- Percival, S.L.; Malic, S.; Cruz, H.; Williams, D.W. Introduction to biofilms. In Biofilms and Veterinary Medicine; Percival, S.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 41–68. [Google Scholar]
- Lappin-Scott, H.M.; Costerton, J.W. Microbial Biofilms (Biotechnology Research); Cambridge University Press: Cambridge, UK, 2003; p. 328. [Google Scholar]
- Costerton, J.W.; Lappin-Scott, H.M. Introduction to Microbial Biofilms. In Microbial Biofilms; Lappin-Scott, H.M., Costerton, J.W., Eds.; Cambridge University Press: Cambridge, UK, 1995; pp. 1–11. [Google Scholar]
- Flemming, H.-C.; Szewzyk, U.; Griebe, T. Biofilms—Investigative Methods & Applications; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Rozman, U.; Filker, S.; Kalčíková, G. Monitoring of biofilm development and physico-chemical changes of floating microplastics at the air-water interface. Environ. Pollut. 2023, 322, 121157. [Google Scholar] [CrossRef]
- Zhang, Z.; Christopher, G. Effect of particulate contaminants on the development of biofilms at air/water interfaces. Langmuir ACS J. Surf. Colloids 2016, 32, 2724–2730. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, S.; Zhang, W.; Guo, Z.; Li, F.; Li, X. Enterobacter sp. biofilm at the air-water interface promotes carbonate precipitation. Int. Biodeterior. Biodegrad. 2023, 178, 105563. [Google Scholar] [CrossRef]
- Wang, Z.; Morales-Acosta, M.D.; Li, S.; Liu, W.; Kanai, T.; Liu, Y.; Chen, Y.-N.; Walker, F.J.; Ahn, C.H.; Leblanc, R.M. A narrow amide I vibrational band observed by sum frequency generation spectroscopy reveals highly ordered structures of a biofilm protein at the air/water interface. Chem. Commun. 2016, 52, 2956–2959. [Google Scholar] [CrossRef]
- Liu, W.; Li, S.; Wang, Z.; Yan, E.C.; Leblanc, R.M. Characterization of surface-active biofilm protein BslA in self-assembling langmuir monolayer at the air–water interface. Langmuir ACS J. Surf. Colloids 2017, 33, 7548–7555. [Google Scholar] [CrossRef]
- Münster, U.; Heikkinen, E.; Knulst, J. Nutrient composition, microbial biomass and activity at the air–water interface of small boreal forest lakes. Hydrobiologia 1997, 363, 261–270. [Google Scholar] [CrossRef]
- Kobayashi, K.; Iwano, M. BslA (YuaB) forms a hydrophobic layer on the surface of Bacillus subtilis biofilms. Mol. Microbiol. 2012, 85, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Boomer, S.M.; Noll, K.L.; Geesey, G.G.; Dutton, B.E. Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming. Appl. Environ. Microbiol. 2009, 75, 2464–2475. [Google Scholar] [CrossRef]
- Hacke, S.; Möbius, D. Influence of active sites distribution on CaCO3 formation under model biofilms at the air/water interface. In Mesophases, Polymers, and Particles; Springer: Berlin/Heidelberg, Germany, 2004; pp. 105–109. [Google Scholar]
- Henk, M.C. Capturing air–Water interface biofilms for microscopy and molecular analysis. In Part of the Methods in Molecular Biology Book Series; Humana Press: New York, NY, USA, 2014; pp. 301–322. [Google Scholar]
- Pace, J.L.; Rupp, M.E.; Finch, R.G. Biofilms, Infection, and Antimicrobial Therapy; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Roberts, A.E.; Kragh, K.N.; Bjarnsholt, T.; Diggle, S.P. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J. Mol. Biol. 2015, 427, 3646–3661. [Google Scholar] [CrossRef] [PubMed]
- Costerton, J.W. Cystic fibrosis pathogenesis and the role of biofilms in persistent infection. Trends Microbiol. 2001, 9, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Høiby, N. A short history of microbial biofilms and biofilm infections. Apmis 2017, 125, 272–275. [Google Scholar] [CrossRef]
- Hall-Stoodley, L.; Stoodley, P. Evolving concepts in biofilm infections. Cell. Microbiol. 2009, 11, 1034–1043. [Google Scholar] [CrossRef]
- Bjarnsholt, T. The role of bacterial biofilms in chronic infections. Apmis 2013, 121, 1–58. [Google Scholar] [CrossRef]
- Ch’ng, J.-H.; Chong, K.K.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 2019, 17, 82–94. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms and Device-Associated Infections. Emerg. Infect. Dis. 2001, 7, 277–281. [Google Scholar] [CrossRef]
- Tenke, P.; Kovacs, B.; Jäckel, M.; Nagy, E. The role of biofilm infection in urology. World J. Urol. 2006, 24, 13. [Google Scholar] [CrossRef]
- Kirketerp-Møller, K.; Zulkowski, K.; James, G. Chronic wound colonization, infection, and biofilms. Biofilm Infect. 2011, 11–24. [Google Scholar] [CrossRef]
- Wu, M.Y.; Sendamangalam, V.; Xue, Z.; Seo, Y. The influence of biofilm structure and total interaction energy on Escherichia coli retention by Pseudomonas aeruginosa biofilm. Biofouling 2012, 28, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Pons, L.; Delia, M.; Bergel, A. Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes. J. Biotechnol. 2011, 102, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Neu, T.R.; Manz, B.; Volke, F.; Dynes, J.J.; Hitchcock, A.P.; Lawrence, J.R. Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. FEMS Microbiol. Ecol. 2010, 72, 1–21. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, C.C.; da Fonseca, M.M.R. Assessment of three-dimensional biofilm structure using an optical microscope. BioTechniques 2007, 42, 616–620. [Google Scholar] [CrossRef]
- Stoodley, P.; Bolyle, J.D.; Lappin-Scott, H.M. Influece of flow on the structure of bacterial biofilms. In Proceedings of the 8th International Symposium on Microbial Ecology, Halifax, NS, Canada, 9–14 August 1998; pp. 263–269. [Google Scholar]
- Block, M.S.; Rowan, B.G. Hypochlorous acid: A review. J. Oral Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Abney, S.; Bright, K.; McKinney, J.; Ijaz, M.K.; Gerba, C. Toilet hygiene—Review and research needs. J. Appl. Microbiol. 2021, 131, 2705–2714. [Google Scholar] [CrossRef]
- Lin, L.; Jiang, W.; Xu, X.; Xu, P. A critical review of the application of electromagnetic fields for scaling control in water systems: Mechanisms, characterization, and operation. NPJ Clean Water 2020, 3, 25. [Google Scholar] [CrossRef]
- Kanematsu, H.; Umeki, S.; Hirai, N.; Miura, Y.; Wada, N.; Kogo, T.; Tohji, K.; Otani, H.; Okita, K.; Ono, T. Verification of Effect of Alternative Electromagnetic Treatment on Control of Biofilm and Scale Formation by a new Laboratory Biofilm Reactor. Ceram. Trans. 2016, 259, 199–212. [Google Scholar] [CrossRef]
- Miyao, M. Coevolution of a premium segment and product innovation: A case study of the Japanese rice cooker market. Asia Pac. J. Mark. Logist. 2021, 33, 1709–1722. [Google Scholar] [CrossRef]
- Ivleva, N.P.; Wagner, M.; Horn, H.; Niessner, R.; Haisch, C.J.A.C. In situ surface-enhanced Raman scattering analysis of biofilm. Anal. Chem. 2008, 80, 8538–8544. [Google Scholar] [CrossRef] [PubMed]
- Ivleva, N.P.; Wagner, M.; Horn, H.; Niessner, R.; Haisch, C.J.A. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Anal. Bioanal. Chem. 2009, 393, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Beier, B.D.; Quivery, R.G.J.; Berger, A. Identification of different bacterial species in biofilms using confocal Raman microscopy. J. Biomed. Opt. 2010, 15, 660011–660015. [Google Scholar] [CrossRef] [PubMed]
- Samek, O.; Al-Marashi, J.; Telle, H. The potential of Raman spectroscopy for the identification of biofilm formation by Staphylococcus epidermidis. Laser Phys. Lett. 2010, 7, 378–383. [Google Scholar] [CrossRef]
- Beier, B.D.; Quivey, R.G.; Berger, A.J. Confocal Raman microscopy for identification of bacterial species in biofilms. In Proceedings of the Frontiers in Biological Detection: From Nanosensors to Systems III, San Francisco, CA, USA, 8 February 2011; pp. 70–74. [Google Scholar]
- Millo, D.; Harnisch, F.; Patil, S.A.; Ly, H.K.; Schröder, U.; Hildebrandt, P. In situ spectroelectrochemical investigation of electrocatalytic microbial biofilms by surface-enhanced resonance Raman spectroscopy. Angew. Chem. Int. Ed. 2011, 50, 2625–2627. [Google Scholar] [CrossRef]
- Beier, B.D.; Quivey, R.G.; Berger, A.J. Raman microspectroscopy for species identification and mapping within bacterial biofilms. AMB Express 2012, 2, 35–41. [Google Scholar] [CrossRef]
- Czamara, K.; Majzner, K.; Pacia, M.Z.; Kochan, K.; Kaczor, A.; Baranska, M. Raman Spectroscopy of lipids: A review. J. Raman Spectrosc. 2015, 46, 4–20. [Google Scholar] [CrossRef]
- Chao, Y.; Zhang, T. Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: From initial attachment to mature biofilm. Anal. Bioanal. Chem. 2012, 404, 1465–1475. [Google Scholar] [CrossRef]
- Larkin, P. General Outline and Strategies for IR and Raman Spectral Interpretation. In Infrared and Raman Spectroscopy: Principles and Spectral Interpretation; Larkin, P., Ed.; Elsevier: Watham, MA, USA, 2011; pp. 117–133. [Google Scholar]
- Kanematsu, H.; Hirai, N.; Miura, Y.; Itoh, H.; Kuroda, D.; Umeki, S. Biofilm leading to corrosion on materials surfaces and the moderation by alternative electro-magnetic field. In Proceedings of the Materials Science and Technology Conference and Exhibition 2013, MS and T 2013, Montreal, QC, Canada, 27–31 October 2013; pp. 2761–2767. [Google Scholar]
- Kanematsu, H.; Umeki, S.; Ogawa, A.; Hirai, N.; Kogo, T.; Tohji, K. The cleaning effect on metallic materials under a weak alternating electromagnetic field and biofilm. In Proceedings of the Ninth Pacific Rim International Conference on Advanced Materials and Processing (PRICM9), Kyoto, Japan, 1 August 2016. [Google Scholar]
- Kanematsu, H.; Sasaki, S.; Miura, Y.; Kogo, T.; Sano, K.; Wada, N.; Yoshitake, M.; Tanaka, T. Composite coating to control biofilm formation and effect of alternate electro-magnetic field. Mater. Technol. 2015, 30, B21–B26. [Google Scholar] [CrossRef]
- Kanematsu, H.; Katsuragawa, T.; Barry, D.M.; Yokoi, K.; Umeki, S.; Miura, H.; Zimmerman, S. Biofilm formation behaviors formed by E. coli under weak alternating electromagnetic fields. Ceram. Trans. (Adv. Ceram. Environ. Funct. Struct. Energy Appl. II) 2019, 266, 195–208. [Google Scholar]
- Kanematsu, H.; Miura, H.; Barry, D.; Zimmermann, S. Effect of alternating electromagnetic field on extracellular polymeric substances derived from biofilms and its mechanism. Contrib. Pap. Mater. Sci. Technol. 2019, 182–185. [Google Scholar]
- Haagensen, J.A.; Bache, M.; Giuliani, L.; Blom, N.S. Effects of resonant electromagnetic fields on biofilm formation in Pseudomonas aeruginosa. Appl. Sci. 2021, 11, 7760. [Google Scholar] [CrossRef]
- Di Campli, E.; Di Bartolomeo, S.; Grande, R.; Di Giulio, M.; Cellini, L. Effects of extremely low-frequency electromagnetic fields on Helicobacter pylori biofilm. Curr. Microbiol. 2010, 60, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, W. Polymers and Electromagnetic Radiation Fundamentals and Practical Application; Wiley: Weinheim, Germany, 2014. [Google Scholar]
- ISO Standard No. 4768:2023; Measurement Method of Anti-Biofilm Activity on Plastic and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2023. Available online: https://www.iso.org/standard/80309.html (accessed on 30 July 2023).
- Society of International Sustaining Growth for Antimicrobial Articles, SIAA Home Page. Available online: https://www.kohkin.net/en_index.html (accessed on 30 July 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aoyama, N.; Kanematsu, H.; Barry, D.M.; Miura, H.; Ogawa, A.; Kogo, T.; Kawai, R.; Hagio, T.; Hirai, N.; Kato, T.; et al. AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect. Materials 2023, 16, 7051. https://doi.org/10.3390/ma16217051
Aoyama N, Kanematsu H, Barry DM, Miura H, Ogawa A, Kogo T, Kawai R, Hagio T, Hirai N, Kato T, et al. AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect. Materials. 2023; 16(21):7051. https://doi.org/10.3390/ma16217051
Chicago/Turabian StyleAoyama, Natsu, Hideyuki Kanematsu, Dana M. Barry, Hidekazu Miura, Akiko Ogawa, Takeshi Kogo, Risa Kawai, Takeshi Hagio, Nobumitsu Hirai, Takehito Kato, and et al. 2023. "AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect" Materials 16, no. 21: 7051. https://doi.org/10.3390/ma16217051
APA StyleAoyama, N., Kanematsu, H., Barry, D. M., Miura, H., Ogawa, A., Kogo, T., Kawai, R., Hagio, T., Hirai, N., Kato, T., Yoshitake, M., & Ichino, R. (2023). AC Electromagnetic Field Controls the Biofilms on the Glass Surface by Escherichia coli & Staphylococcus epidermidis Inhibition Effect. Materials, 16(21), 7051. https://doi.org/10.3390/ma16217051