Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Analysis
3.1. Microstructure of the As-Extruded Alloys
3.2. Mechanical Properties of the As-Extruded Alloys
3.3. Fracture of the As-Extruded Alloys
4. Discussion
4.1. Solution Strengthening
4.2. Grain Boundary Strengthening
4.3. Texture Strengthening
4.4. Dislocation Strengthening
4.5. The Role of Bulk LPSO Phases
4.6. A Design Strategy for High-Performance Mg-RE-Zn Alloys
5. Conclusions
- The bulk LPSO phases promote grain refinement and weaken the texture during the plastic deformation process for the 1.6Zn alloy, constituting effects that are beneficial to plasticity. Additionally, in this way, the LPSO phases significantly contribute to the strength of the 1.6Zn alloy due to the significant strengthening effect of grain refinement, notwithstanding the modest reduction in strength caused by the weakening of texture.
- Attributed to the high Young’s modulus and shear modulus of bulk LPSO phases, as well as their severe deformation after extrusion, bulk LPSO phases act as hard phases, and this directly contributes to the strength increment. However, due to the fact that the bulk LPSO phases after extrusion could not effectively coordinate deformation and easily crack due to stress concentration, bulk LPSO phases themselves play a negative role in plasticity during tensile deformation and cause the premature fracturing of the 1.6Zn alloy.
- A strengthening strategy intended to maintain very good solid-solution strengthening and fine-grain strengthening, optimize the size and distribution of the bulk LPSO phase, and enhance the interaction of the lamellar LPSO phase with the non-basal dislocations was proposed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pollock, T.M. Weight loss with magnesium alloys. Science 2010, 328, 986–987. [Google Scholar] [CrossRef]
- Song, J.F.; Chen, J.; Xiong, X.M.; Peng, X.D.; Chen, D.L.; Pan, F.S. Research advances of magnesium and magnesium alloys worldwide in 2021. J. Magnes. Alloys 2022, 10, 863–898. [Google Scholar] [CrossRef]
- Pan, F.S.; Yang, M.B.; Chen, X.H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 2016, 32, 1211–1221. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, D.F.; Xu, J.Y.; Zhong, S.Y.; Jiang, B.; Pan, F.S. A good balance between strength and ductility in Mg-Zn-Mn-Gd alloy. Intermetallics 2021, 132, 107163. [Google Scholar] [CrossRef]
- Yamashita, A.; Horita, Z.; Langdon, T.G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng. A 2001, 300, 142–147. [Google Scholar] [CrossRef]
- Meng, M.; Lei, G.X.; Zhang, H.L.; Zhang, X.H.; Yu, J.M. Precipitate characteristics and precipitation-strengthening mechanism of Mg-13Gd-4Y-2Zn-0.6Zr alloy. J. Mater. Res. Technol. 2023, 23, 5783–5795. [Google Scholar] [CrossRef]
- Nie, J.F. Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef]
- Du, Z.W.; Peng, Y.G.; Teng, H.; Cao, Z.; Zhang, K.; Ma, M.L. Formation and growth of precipitates in a Mg-7Gd-5Y-1Nd-2Zn-0.5Zr alloy aged at 200 °C. J. Magnes. Alloys 2022, 11, 2326–2339. [Google Scholar] [CrossRef]
- Liu, H.; Huang, H.; Wang, C.; Sun, J.P.; Bai, J.; Xue, F. Recent advances in LPSO-containing wrought magnesium alloys: Relationships between processing, microstructure, and mechanical properties. JOM 2019, 71, 3314–3327. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Morton, A.J.; Nie, J.F. The 18R and 14H long-period stacking ordered structures in Mg-Y-Zn alloys. Acta Mater. 2010, 58, 2936–2947. [Google Scholar] [CrossRef]
- Egusa, D.; Abe, E. The structure of long period stacking/order Mg-Zn-RE phases with extended non-stoichiometry ranges. Acta Mater. 2012, 60, 166–178. [Google Scholar] [CrossRef]
- Kawamura, Y.; Hayashi, K.; Inoue, A.; Masumoto, T. Rapidly solidified powder metallurgy Mg97Zn1Y2 Alloys with excellent tensile yield strength above 600 MPa. Mater. Trans. 2001, 42, 1172–1176. [Google Scholar] [CrossRef]
- Heng, X.W.; Zhang, Y.; Rong, W.; Wu, Y.J.; Peng, L.M. A super high-strength Mg-Gd-Y-Zn-Mn alloy fabricated by hot extrusion and strain aging. Mater. Des. 2019, 169, 107666. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Qiao, X.G.; Zheng, M.Y.; Wu, K.; Kamado, S. Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy. Sci. Rep. 2017, 7, 40846. [Google Scholar] [CrossRef]
- Kim, J.K.; Sandlöbes, S.; Raabe, D. On the room temperature deformation mechanisms of a Mg–Y–Zn alloy with long-period-stacking-ordered structures. Acta Mater. 2015, 82, 414–423. [Google Scholar] [CrossRef]
- Hagihara, K.; Yokotani, N.; Umakoshi, Y. Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure. Intermetallics 2010, 18, 267–276. [Google Scholar] [CrossRef]
- Xu, W.L.; Yu, J.M.; Jia, L.C.; Wu, G.Q.; Zhang, Z.M. Deformation behavior of Mg-13Gd-4Y-2Zn-0.5Zr alloy on the basis of LPSO kinking, dynamic recrystallization and twinning during compression-torsion. Mater. Charact. 2021, 178, 111215. [Google Scholar] [CrossRef]
- Chen, R.; Sandlöbes, S.; Zeng, X.Q.; Li, D.J. Room temperature deformation of LPSO structures by non-basal slip. Mater. Sci. Eng. A 2017, 682, 354–358. [Google Scholar] [CrossRef]
- Hagihara, K.; Kinoshita, A.; Sugino, Y.; Yamasaki, M.; Kawamura, Y.; Yasuda, H.Y.; Umakoshi, Y. Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 2010, 58, 6282–6293. [Google Scholar] [CrossRef]
- Briffod, F.; Shiraiwa, T.; Enoki, M. The effect of the 18R-LPSO phase on the fatigue behavior of extruded Mg/LPSO two-phase alloy through a comparative experimental-numerical study. J. Magnes. Alloys 2021, 9, 130–143. [Google Scholar] [CrossRef]
- Hagihara, K.; Yamasaki, M.; Kawamura, Y.; Nakano, T. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands. Mater. Sci. Eng. A 2019, 763, 138163. [Google Scholar] [CrossRef]
- Zhang, J.S.; Xin, C.; Nie, K.B.; Cheng, W.L.; Wang, H.X.; Xu, C.X. Microstructure and mechanical properties of Mg–Zn–Dy–Zr alloy with long-period stacking ordered phases by heat treatments and ECAP process. Mater. Sci. Eng. A 2014, 611, 108–113. [Google Scholar] [CrossRef]
- Hagihara, K.; Ueyama, R.; Yamasaki, M.; Kawamura, Y.; Nakano, T. Surprising increase in yield stress of Mg single crystal using long-period stacking ordered nanoplates. Acta Mater. 2021, 209, 116797. [Google Scholar] [CrossRef]
- Takagi, K.; Mayama, T.; Mine, Y.; Chiu, Y.L.; Takashima, K. Extended ductility due to kink band formation and growth under tensile loading in single crystals of Mg-Zn-Y alloy with 18R-LPSO structure. J. Alloys Compd. 2019, 806, 1384–1393. [Google Scholar] [CrossRef]
- Li, K.; Injeti, V.S.; Misra, R.D.; Meng, L.G.; Zhang, X.G. The contribution of long-period stacking-ordered structure (LPSO) to high strength-high ductility combination and nanoscale deformation behavior of magnesium-rare earth alloy. Mater. Sci. Eng. A 2018, 713, 112–117. [Google Scholar] [CrossRef]
- Briffod, F.; Ito, S.; Shiraiwa, T.; Enoki, M. Effect of long period stacking ordered phase on the fatigue properties of extruded Mg-Y-Zn alloys. Int. J. Fatigue 2019, 128, 105205. [Google Scholar] [CrossRef]
- Zhang, Z.; Kim, J.; Lee, T.; Li, M.; Gao, Y.; Pan, F. Effect of Substituting Y with Gd on LPSO Phase Dispersion and Mechanical Properties of Mg-2Ni-2Y Alloy. Met. Mater. Int. 2023, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Huang, Y.C.; Liu, Y.; Huang, C.Q. Deformation behavior of LPSO phases with regulated morphology and distribution and their role on dynamic recrystallization in hot-rolled Mg-Gd-Y-Zn-Zr alloy. J. Mater. Res. Technol. 2023, 26, 6121–6134. [Google Scholar] [CrossRef]
- Chen, D.J.; Zhang, K.; Li, T.; Li, X.G.; Li, Y.J.; Ma, M.L. Weak strengthening effect of the precipitated lamellar phase in the homogenized Mg-8Gd-4Y-1.6Zn-0.5Zr (wt%) alloy followed by furnace cooling. Mater. Sci. Eng. A 2019, 744, 1–9. [Google Scholar] [CrossRef]
- Zheng, D.F.; Zhu, Q.C.; Zeng, X.Q.; Li, Y.X. Unveiling the strengthening effect of LPSO phase in a Mg-Y-Zn alloy. Mater. Lett. 2022, 311, 131524. [Google Scholar] [CrossRef]
- Chen, D.J.; Wang, Q.; Zhang, L.; Li, T.; Yuan, J.W.; Shi, G.L. Comparison of Thermal Deformation Behavior and Characteristics of Mg-Gd-Y-Zn Alloys with and without Bulk LPSO Phase. Materials 2023, 16, 5943. [Google Scholar] [CrossRef]
- Lv, B.J.; Peng, J.; Zhu, L.L. The effect of 14H LPSO phase on dynamic recrystallization behavior and hot workability of Mg-2.0Zn-0.3Zr-5.8Y alloy. Mater. Sci. Eng. A 2014, 599, 150–159. [Google Scholar] [CrossRef]
- Su, H.; Chen, L.; Yan, Z.Q. Random Fractal analysis of intergranular fracture in metals. Chin. Sci. Bull. 1992, 37, 1048–1050. [Google Scholar]
- Zhu, Y.M.; Morton, A.J.; Weyland, M.; Nie, J.F. Characterization of planar features in Mg-Y-Zn alloys. Acta Mater. 2010, 58, 464–475. [Google Scholar] [CrossRef]
- Gypen, L.A.; Deruyttere, A. Multi-component solid solution hardening. J. Mater. Sci. 1977, 12, 1028–1033. [Google Scholar] [CrossRef]
- Gao, L.; Chen, R.S.; Han, E.H. Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys. J. Alloys Compd. 2009, 481, 379–384. [Google Scholar] [CrossRef]
- Akhtar, A.; Teghtsoonia, E.n. Substitutional solution hardening of magnesium single crystals. Philos. Mag. 1972, 25, 897–916. [Google Scholar] [CrossRef]
- Chen, Z.H. Wrought Magnesium Alloy; Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Liu, L.; Zhou, X.; Yu, S.; Zhang, J.; Lu, X.; Shu, X.; Su, Z. Effects of heat treatment on mechanical properties of an extruded Mg-4.3Gd-3.2Y-1.2Zn-0.5Zr alloy and establishment of its Hall–Petch relation. J. Magnes. Alloys 2020, 10, 501–512. [Google Scholar] [CrossRef]
- Wang, Q.; Mu, Y.; Lin, J.; Zhang, L.; Raven, H.J. Strengthening and toughening mechanisms of an ultrafine grained Mg-Gd-Y-Zr alloy processed by cyclic extrusion and compression. Mater. Sci. Eng. A 2017, 699, 26–30. [Google Scholar] [CrossRef]
- Hauser, F.E.; Landon, P.R.; Dorn, J.E. Fracture of Magnesium Alloys at Low Temperature; Minerals Research Laboratory, Institute of Engineering Research, University of California: Berkeley, CA, USA, 1955. [Google Scholar]
- Lei, B.; Jiang, B.; Yang, H.; Dong, Z.; Wang, Q.; Yuan, M.; Huang, G.; Song, J.; Zhang, D.; Pan, F. Effect of Nd addition on the microstructure and mechanical properties of extruded Mg-Gd-Zr alloy. Mater. Sci. Eng. A 2021, 816, 141320. [Google Scholar] [CrossRef]
- Luo, S.; Wang, N.; Wang, Y.; Chen, J.; Qin, H.; Kong, S.; Bai, T.; Lu, W.; Xiao, L.; Ma, X.; et al. Texture, microstructure and mechanical properties of an extruded Mg-10Gd-1Zn-0.4 Zr alloy: Role of microstructure prior to extrusion. Mater. Sci. Eng. A 2022, 849, 143476. [Google Scholar] [CrossRef]
- Kwak, T.Y.; Kim, W.J. Mechanical properties and Hall-Petch relationship of the extruded Mg-Zn-Y alloys with different volume fractions of icosahedral phase. J. Alloys Compd. 2019, 770, 589–599. [Google Scholar] [CrossRef]
- Cáceres, C.H.; Lukáč, P. Strain hardening behaviour and the Taylor factor of pure magnesium. Philos. Mag. 2008, 88, 977–989. [Google Scholar] [CrossRef]
- Frost, H.J.; Ashby, M.F. Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Kim, H.; Wang, W.Y.; Shang, S.L.; Kecskes, L.J.; Darling, K.A.; Liu, Z.K. Elastic properties of long periodic stacking ordered phases in Mg-Gd-Al alloys: A first-principles study. Intermetallics 2018, 98, 18–27. [Google Scholar] [CrossRef]
- Luan, S.; Zhang, L.; Chen, L. The influence of the LPSO on the deformation mechanisms and tensile properties at elevated temperatures of the Mg-Gd-Zn-Mn alloys. J. Mater. Res. Technol. 2023, 23, 6216–6229. [Google Scholar] [CrossRef]
- Kim, Y.M.; Mendis, C.; Sasaki, T. Static recrystallization behaviour of cold rolled Mg-Zn-Y alloy and role of solute segregation in microstructure evolution. Scr. Mater. 2017, 136, 41–45. [Google Scholar] [CrossRef]
Alloys | Gd (wt.%/at.%) | Y (wt.%/at.%) | Zn (wt.%/at.%) | Zr (wt.%/at.%) | Mg (wt.%/at.%) |
---|---|---|---|---|---|
0.6Zn | 8.60/1.49 | 3.88/1.19 | 0.66/0.28 | 0.50/0.15 | Balance |
1.6Zn | 8.51/1.49 | 4.03/1.24 | 1.60/0.67 | 0.49/0.15 | Balance |
Alloys | Volume Fraction of LPSO Phases | Content of Alloy Elements in α-Mg Grains/at.% | ||
---|---|---|---|---|
Gd | Y | Zn | ||
0.6Zn | 0.23% | 1.48 | 1.18 | 0.26 |
1.6Zn | 4.71% | 1.31 | 1.09 | 0.33 |
Alloys | /MPa | /MPa | /MPa | /MPa |
---|---|---|---|---|
0.6Zn | 108.8 | 116.4 | 17.9 | 2.3 |
1.6Zn | 102.2 | 156.0 | 0 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Li, T.; Sun, Z.; Wang, Q.; Yuan, J.; Ma, M.; Peng, Y.; Zhang, K.; Li, Y. Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys. Materials 2023, 16, 7258. https://doi.org/10.3390/ma16237258
Chen D, Li T, Sun Z, Wang Q, Yuan J, Ma M, Peng Y, Zhang K, Li Y. Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys. Materials. 2023; 16(23):7258. https://doi.org/10.3390/ma16237258
Chicago/Turabian StyleChen, Dongjie, Ting Li, Zhaoqian Sun, Qi Wang, Jiawei Yuan, Minglong Ma, Yonggang Peng, Kui Zhang, and Yongjun Li. 2023. "Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys" Materials 16, no. 23: 7258. https://doi.org/10.3390/ma16237258
APA StyleChen, D., Li, T., Sun, Z., Wang, Q., Yuan, J., Ma, M., Peng, Y., Zhang, K., & Li, Y. (2023). Effects of Bulk LPSO Phases on Mechanical Properties and Fracture Behavior of As-Extruded Mg-Gd-Y-Zn-Zr Alloys. Materials, 16(23), 7258. https://doi.org/10.3390/ma16237258