Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers
Abstract
:1. Introduction
2. Methods
2.1. Theoretical Calculations
2.2. Structural Investigation of the Samples
2.3. Optical Measurements
3. Results and Discussion
3.1. Theoretical Results
- Reduction of Eg with increasing number of QW layers. The observed gap reduction between SLs with 1 and 3 QW monolayers is in the order of 0.1 eV. Apart from the reduced hybridization effect, for thicker QWs, the built-in electric field starts to play a more significant role, leading to a decrease in the band gap values. The latter effect is described by Quantum Confined Stark Effect.
- Reduction of Eg with increasing In content in the QB. The obtained gap reduction (for SLs with the same QW and buffer) is between 0.7 and 0.9 eV, depending on the case. We can explain this effect by the hybridization of the QW and QB wave functions, which is dominant in SLs with thin QWs.
- Reduction of Eg with increasing In content in the buffer. The reduction of the band gap values between the same SLs with GaN and In0.33Ga0.67N buffers results in a gap reduction of about 0.4 eV for In0.33Ga0.67N/GaN, and about 0.2 eV for the other two SLs (Figure 2b,c). For a clearer illustration, we present in Figure 3 the dependence of the band gaps on the content of In in a buffer for three considered SLs. We observe a strong nonlinear decrease in the band gap values with increasing In content in a buffer, the higher the In content in the buffer, the more pronounced the band gap decrease.
3.2. Experimental Results
3.2.1. Structural Characterization of the Samples
3.2.2. Optical Results
3.3. Comparison between Theory and Experiment
- (i)
- Comparing SLs 33/0 (Figure 9a) grown on GaN and on an InGaN buffer, we observe a downshift of the Eg energy of about 0.3 eV and between 0.3 and 0.4 eV (EPL).
- (ii)
- Comparing SLs 33/16.5 grown on GaN and on an In0.165Ga0.835N buffer, we observe a downshift of the Eg and EPL of about 0.35 eV (Figure 8b).
- (iii)
- Comparing SLs 33/16.5 grown on GaN and 33/25 grown on an In0.33Ga0.67N buffer, we observe a downshift of the Eg of about 0.72 eV and a downshift of the EPL between 0.72 and 0.75 eV (Figure 9b).
- (iv)
- The lowest band gap energy obtained for 33/25 grown on In0.33Ga0.33N SL is slightly below 2 eV, in agreement with the experimental results.
- (v)
- It is suggestive to formulate the general observation that can be derived from our studies: that the total amount of In in an SL, including a buffer, determines the magnitude of Eg/EPL.
4. Conclusions
- (a)
- Not only the amount of In in the QW and in QB, but also the amount of In in the buffer determines the magnitude of Eg/EPL. The higher the In content of a buffer, the more pronounced the observed reduction in the energy gap values.
- (b)
- Based on the comparison of the calculated ab initio band gaps of the SLs with the PL, the emission energies obtained from the measurements on the specially designed samples, it has been shown that by changing the In content in the buffer structures, the light emission can be shifted to lower energies by about 0.72 eV (167 nm) compared to the case of similar type of SLs grown on GaN substrate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Camacho-Reynoso, M.; Hernández-Gutiérrez, C.; Yee-Rendón, C.; Rivera-Rodríguez, C.; Bahena-Uribe, D.; Gallardo-Hernández, S.; Kudriavtsev, Y.; López-López, M.; Casallas-Moreno, Y. Research article Cubic InxGa1−xN/GaN quantum wells grown by Migration Enhanced Epitaxy (MEE) and conventional Molecular Beam Epitaxy (MBE). J. Alloy. Compd. 2022, 921, 165994. [Google Scholar] [CrossRef]
- Yamamoto, A.; Islam, M.R.; Kang, T.T.; Hashimoto, A. Recent advances in InN-based solar cells: Status and challenges in InGaN and InAlN solar cells. Phys. Status Solidi C 2010, 7, 1309–1316. [Google Scholar] [CrossRef]
- Shan, H.S.; Li, M.H.; Li, X.Y.; Li, C.K.; Liu, S.W.; Song, Y.F.; Xu, B.S. Evaluation of Photoconversion Efficiency in InGaN/GaN MQW Solar Cells at High Temperatures. ACS Appl. Energy Mater. 2023, 6, 8503–8510. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Kudriavtsev, Y.; Cardona, D.; Guillén-Cervantes, A.; Santana-Rodríguez, G.; Escobosa, A.; López-López, M. InxGa1−xN nucleation by In+ ion implantation into GaN. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2017, 413, 62–67. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, K.; Zhuang, J.; Lin, J.; Lu, Z.; Jiang, Z.; Guo, W. Recent progress of InGaN-Based red light emitting diodes. Micro Nanostruct. 2023, 183, 207669. [Google Scholar] [CrossRef]
- Harbers, G.; Bierhuizen, S.J.; Krames, M.R. Status and Future of High Power Light Emitting Diodes for Solid state Lighting. J. Disp. Technol. 2007, 3, 98. [Google Scholar] [CrossRef]
- Denbaars, S.; Feezell, D.; Kelchner, K.; Pimputkar, S.; Pan, C.C.; Yen, C.C.; Tanaka, S.; Zhao, Y.; Pfaff, N.; Farrell, R.; et al. Development of gallium-nitride-based light-emitting diodes (LEDs) and laser diodes for energy-efficient lighting and displays. Acta Mater. 2013, 61, 945. [Google Scholar] [CrossRef]
- Gorczyca, I.; Łepkowski, S.P.; Suski, T.; Christensen, N.E.; Svane, A. Influence of indium clustering on the band structure of semiconducting ternary and quaternary nitride alloys. Phys. Rev. B 2009, 80, 075202. [Google Scholar] [CrossRef]
- Costa, P.M.F.J.; Datta, R.; Kappers, M.J.; Vickers, M.E.; Humphreys, C.; Graham, D.; Dawson, P.; Godfrey, M.J.; Trush, E.J.; Mullins, J.T. Misfit dislocations in In-rich InGaN/GaN quantum well structures. Phys. Status Solidi (A) 2006, 203, 1279. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Che, S.B.; Yamaguchi, W.; Saito, H.; Wang, X.Q.; Ishitani, Y.; Hwang, E.S. Proposal and achievement of novel structure InN/GaN multiple quantum wells consisting of 1 ML and fractional monolayer InN wells inserted in GaN matrix. Appl. Phys. Lett. 2007, 90, 073101. [Google Scholar] [CrossRef]
- Suski, T.; Schulz, T.; Albrecht, M.; Wang, X.Q.; Gorczyca, I.; Skrobas, K.; Christensen, N.E.; Svane, A. The discrepancies between theory and experiment in the optical emission of monolayer In(Ga)N quantum wells revisited by transmission electron microscopy. Appl. Phys. Lett. 2014, 104, 182103. [Google Scholar] [CrossRef]
- Duff, A.I.; Lymperakis, L.; Neugebauer, J. Understanding and controlling indium incorporation and surface segregation on InxGa1−xN surfaces: An ab initio approach. Phys. Rev. B 2014, 89, 085307. [Google Scholar] [CrossRef]
- Iida, D.; Ohkawa, K. Recent progress in red light-emitting diodes by III-nitride materials. Semicond. Sci. Technol. 2022, 37, 013001. [Google Scholar] [CrossRef]
- Iida, D.; Zhuang, Z.; Kirilenko, P.; Velazquez-Rizo, M.; Najmi, M.A.; Ohkawa, K. 633-nm InGaN-based red LEDs grown on thick underlying GaN layers with reduced in-plane residual stress. Appl. Phys. Lett. 2020, 116, 162101. [Google Scholar] [CrossRef]
- Wurm, C.; Collins, H.; Hatui, N.; Li, W.; Pasayat, S.; Hamwey, R.; Sun, K. Demonstration of device-quality 60% relaxed In0.2Ga0.8N on porous GaN pseudo-substrates grown by PAMBE. J. Appl. Phys. 2022, 131, 015701. [Google Scholar] [CrossRef]
- Pasayat, S.S.; Gupta, C.; Acker-James, D.; Cohen, D.A.; DenBaars, S.P.; Nakamura, S.; Keller, S.; Mishra, U.K. Fabrication of relaxed InGaN pseudo-substrates composed of micron-sized pattern arrays with high fill factors using porous GaN. Semicond. Sci. Technol. 2019, 34, 115020. [Google Scholar] [CrossRef]
- Dussaigne, A.; Barbier, F.; Damilano, B.; Chenot, S.; Grenier, A.; Papon, A.M.; Samuel, B.; Bakir, B.B.; Vaufrey, D.; Pillet, J.C.; et al. Full InGaN red light emitting diode. J. Appl. Phys. 2020, 128, 135704. [Google Scholar] [CrossRef]
- Muziol, G.; Hajdel, M.; Siekacz, M.; Turski, H.; Pieniak, K.; Bercha, A.; Trzeciakowski, W.; Kudrawiec, R.; Suski, T.; Skierbiszewski, C. III-nitride optoelectronic devices containing wide quantum wells—Unexpectedly efficient light sources. Jpn. J. Appl. Phys. 2021, 61, SA0801. [Google Scholar] [CrossRef]
- Lachowski, A.; Grzanka, E.; Czernecki, R.; Grabowski, M.; Grzanka, S.; Leszczyński, M.; Smalc-Koziorowska, J. Effect of doping of layers surrounding GaN/InGaN multiple quantum wells on their thermal stability. Mater. Sci. Semicond. Process. 2023, 166, 107752. [Google Scholar] [CrossRef]
- Chan, P.; DenBaars, S.P.; Nakamura, S. Growth of highly relaxed InGaN pseudo-substrates over full 2-in. wafers. Appl. Phys. Lett. 2021, 119, 131106. [Google Scholar] [CrossRef]
- Gorczyca, I.; Suski, T.; Staszczak, G.; Christensen, N.E.; Svane, A.; Wang, X.; Dimakis, E.; Moustakas, T. InN/GaN Superlattices: Band Structures and Their Pressure Dependence. Jpn. J. Appl. Phys. 2013, 52, 08JL06. [Google Scholar] [CrossRef]
- Lepkowski, S.P.; Bardyszewski, W. Topological insulator with negative spin-orbit coupling and transition between Weyl and Dirac semimetals in InGaN-based quantum wells. Sci. Rep. 2018, 8, 15403. [Google Scholar] [CrossRef] [PubMed]
- Siekacz, M.; Wolny, P.; Ernst, T.; Grzanka, E.; Staszczak, G.; Suski, T.; Feduniewicz-Zmuda, A.; Sawicka, M.; Moneta, J.; Anikeeva, M.; et al. Impact of the substrate lattice constant on the emission properties of InGaN/GaN short-period superlattices grown by plasma assisted MBE. Superlattices Microstruct. 2019, 133, 106209. [Google Scholar] [CrossRef]
- Even, A.; Laval, G.; Ledoux, O.; Ferret, P.; Sotta, D.; Guiot, E.; Levy, F.; Robin, I.C.; Dussaigne, A. Enhanced In incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate. Appl. Phys. Lett. 2017, 110, 262103. [Google Scholar] [CrossRef]
- Sharma, T.K.; Towe, E. Application-oriented nitride substrates: The key to long-wavelength nitride lasers beyond 500 nm. J. Appl. Phys. 2010, 107, 024516. [Google Scholar] [CrossRef]
- Gorczyca, I.; Suski, T.; Christensen, N.E.; Svane, A. Theoretical study of nitride short period superlattices. Top. Rev. J. Phys. C 2018, 30, 63001. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Perdew, J.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground State of the Electron Gas by a Stochastic Method. Phys. Rev. Lett. 1980, 45, 566. [Google Scholar] [CrossRef]
- Methfessel, M. Elastic constants and phonon frequencies of Si calculated by a fast full-potential linear-muffin-tin-orbital method. Phys. Rev. B 1988, 38, 1537. [Google Scholar] [CrossRef]
- Andersen, O.K. Linear methods in band theory. Phys. Rev. B 1975, 12, 3060. [Google Scholar] [CrossRef]
- Christensen, N.E. Electronic structure of GaAs under strain. Phys. Rev. B 1984, 30, 5753. [Google Scholar] [CrossRef]
- Christensen, N.E.; Gorczyca, I. Optical and structural properties of III-V nitrides under pressure. Phys. Rev. B 1994, 50, 4397. [Google Scholar] [CrossRef]
- Gorczyca, I.; Christensen, N.E.; Alouani, M. Calculated optical and structural properties of InP under pressure. Phys. Rev. B 1989, 39, 7705. [Google Scholar] [CrossRef]
- Cardona, M.; Suemoto, T.; Christensen, N.E.; Isu, T.; Ploog, K. Electronic and vibronic structure of the (GaAs)1(AlAs)1 superlattice. Phys. Rev. 1987, B36, 5906. [Google Scholar] [CrossRef]
- Cardona, M.; Christensen, N.E.; Fasol, G. Relativistic band structure and spin-orbit splitting of zinc-blende-type semiconductors. Phys. Rev. B 1988, 38, 1806. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, I.; Christensen, N.E. Band structure and high-pressure phase transition in GaN. Solid State Commun. 1991, 80, 335. [Google Scholar] [CrossRef]
- Segev, D.; Janotti, A.; Van de Walle, C.G. Self-consistent band-gap corrections in density functional theory using modified pseudopotentials. Phys. Rev. B 2007, 75, 035201. [Google Scholar] [CrossRef]
- Staszczak, G.; Gorczyca, I.; Grzanka, E.; Smalc-Koziorowska, J.; Targowski, G.; Czernecki, R.; Siekacz, M.; Grzanka, S.; Skierbiszewski, C.; Schulz, T.; et al. Bandgap behavior of InGaN/GaN short period superlattices grown by metal-organic vapor phase epitaxy. Phys. Status Solidi B 2017, 254, 1600710. [Google Scholar] [CrossRef]
- Gorczyca, I.; Staszczak, G.; Targowski, G.; Grzanka, E.; Smalc-Koziorowska, J.; Suski, T.; Kawamura, T.; Kangawa, Y. Band gap tuning in InxGa1−xN/InyGa1−yN short period superlattices. Superlattices Microstruct. 2021, 155, 106907. [Google Scholar] [CrossRef]
Type of the Sample | XRD QW in Content ± 2 (%) | XRD QB in Content ± 2 (%) | QW Thickness (MLs) ± 0.5 ML | QB Thickness (MLs) ± 0.5 ML | EPL (eV) at 20 (K) | |
---|---|---|---|---|---|---|
InGaN buffer 17% | A1 | 28 | 0 | 2 | 25 | 2.67 |
A2 | 28 | 0 | 2 | 30 | 2.78 | |
A3 | 28 | 15 | 2 | 30 | 2.37 | |
A4 | 28 | 15 | 2 | 23 | 2.38 | |
A5 | 28 | 15 | 2 | 8 | 2.41 | |
InGaN buffer 20% | B1 | 31 | 17 | 2 | 30 | 2.07 |
B2 | 31 | 18 | 2 | 8 | 1.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staszczak, G.; Gorczyca, I.; Grzanka, E.; Smalc-Koziorowska, J.; Targowski, G.; Suski, T. Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers. Materials 2023, 16, 7386. https://doi.org/10.3390/ma16237386
Staszczak G, Gorczyca I, Grzanka E, Smalc-Koziorowska J, Targowski G, Suski T. Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers. Materials. 2023; 16(23):7386. https://doi.org/10.3390/ma16237386
Chicago/Turabian StyleStaszczak, Grzegorz, Iza Gorczyca, Ewa Grzanka, Julita Smalc-Koziorowska, Grzegorz Targowski, and Tadeusz Suski. 2023. "Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers" Materials 16, no. 23: 7386. https://doi.org/10.3390/ma16237386
APA StyleStaszczak, G., Gorczyca, I., Grzanka, E., Smalc-Koziorowska, J., Targowski, G., & Suski, T. (2023). Toward Red Light Emitters Based on InGaN-Containing Short-Period Superlattices with InGaN Buffers. Materials, 16(23), 7386. https://doi.org/10.3390/ma16237386